
# **Buck / Boost Tpology**

CoolMOS<sup>TM 1)</sup> with fast SONIC Diode

I<sub>D25</sub> 54 A = 600 V $R_{DS(on) max} = 41 m\Omega$ 

**ISOPLUS™** - electrically isolated surface to heatsink **Surface Mount Power Device** 

Part number MKG40RK600LB



## Features / Advantages:

- Fast CoolMOS™ 1) C6 MOSFET
- very low on-resistance
- low gate charge
- avalanche rated for unclamped inductive switching (UIS)

## Applications:

- Buck / boost chopper
- PFC stage
- Forward converter

#### Package: SMPD

- isolated surface to heatsink
- low coupling capacity between pins and heatsink
- PCB space saving
- enlarged creepage towards heatsink
- application friendly pinout
- low inductive current path
- high reliability

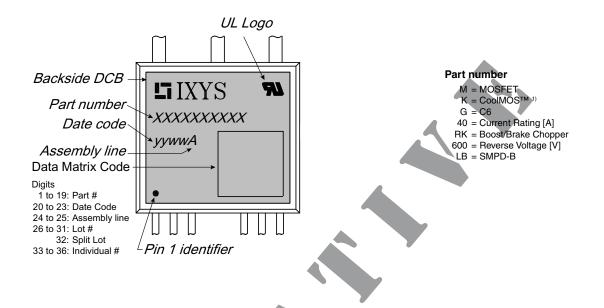
1) CoolMOS™ is a trademark of Infineon Technologies AG.



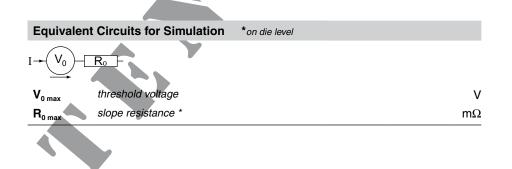
IXYS reserves the right to change limits, test conditions and dimensions.

Data according ot IEC 60747 and per semiconductor unless otherwise specified



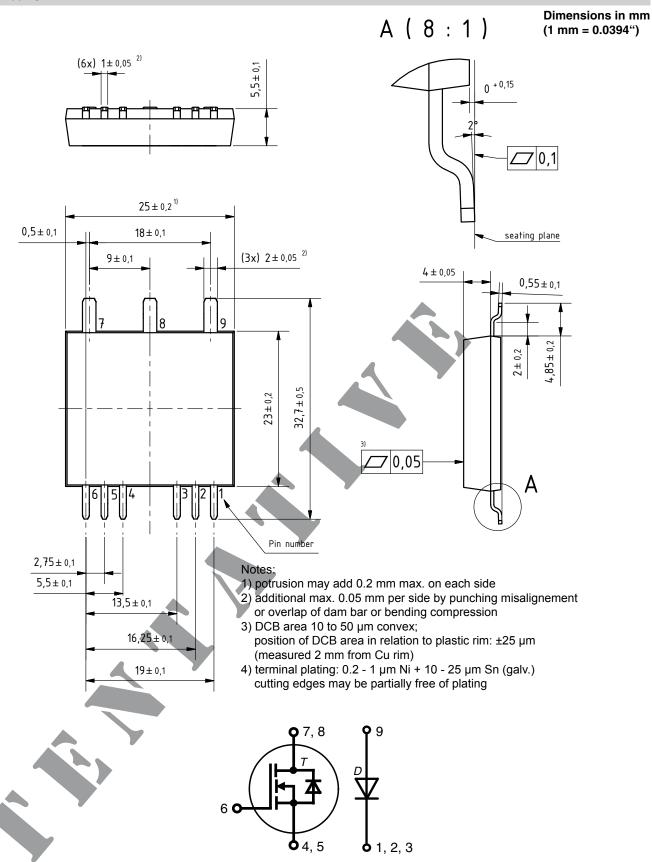

| MOSFET                               |                                                                             |                                                                                           |                                                   |        | Rating  | <b>S</b>     |            |  |
|--------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------|--------|---------|--------------|------------|--|
| Symbol                               | Definitions                                                                 | Conditions                                                                                |                                                   | min.   | typ.    | max.         |            |  |
| $\mathbf{V}_{\mathtt{DSS}}$          | drain source breakdown voltage                                              | ир                                                                                        | to $T_{VJ} = 150^{\circ}C$                        |        |         | 600          | ١          |  |
| $V_{GS}$                             | gate source voltage                                                         | continuous<br>transient                                                                   | $T_{VJ} = 25^{\circ}C$                            |        |         | ±20<br>±30   | \          |  |
| I <sub>D25</sub>                     | drain current                                                               |                                                                                           | $T_{\rm C} = 25^{\circ}{\rm C}$                   |        |         | 54           | A          |  |
| I <sub>D80</sub>                     |                                                                             |                                                                                           | $T_C = 80^{\circ}C$                               |        |         | 41           | A          |  |
| I <sub>D100</sub>                    |                                                                             |                                                                                           | $T_C = 100^{\circ}C$                              |        |         | 34           | A          |  |
| E <sub>AS</sub>                      | non-repetetive avalanche energy                                             | single pulse                                                                              | $T_{VJ} = 25^{\circ}C$                            |        |         | 1.95<br>13.4 | Ā          |  |
| dV/dt                                | rate of rise of voltage                                                     | $I_S \ge I_{DM}; V_{DD} \le 400 \text{ V}$                                                | $T_{VJ} = 25^{\circ}C$                            |        |         | 15           | V/ns       |  |
| R <sub>DSon</sub>                    | static drain source on resistance                                           | $I_D = 44 \text{ A}; V_{GS} = 10 \text{ V (Chip)}$                                        | $T_{VJ} = 25^{\circ}C$                            |        | 37      | 41           | mΩ         |  |
| V <sub>GS(th)</sub>                  | gate threshold voltage                                                      | $I_D = 3 \text{ mA}; V_{DS} = V_{GS}$                                                     | $T_{VJ} = 25^{\circ}C$                            | 2.5    | 3       | 3.5          | \          |  |
| I <sub>DSS</sub>                     | drain source leakage current                                                | $V_{DS} = V_{DSS}$ ; $V_{GS} = 0 \text{ V}$                                               | $T_{VJ} = 25^{\circ}C$<br>$T_{VJ} = 150^{\circ}C$ |        | 50      | 5            | μ <i>Α</i> |  |
| I <sub>GSS</sub>                     | gate source leakage current                                                 | $V_{DS} = 0 \text{ V}; V_{GS} = \pm 20 \text{ V}$                                         |                                                   |        |         | ±100         | n/         |  |
| C <sub>iss</sub>                     | input capacitance                                                           | $V_{GS} = 0 \text{ V}; V_{DS} = 100 \text{ V}; f = 1 \text{ MHz}$                         | T <sub>v,j</sub> = 25°C                           |        | 6.5     |              | nF         |  |
| Coss                                 | output capacitance                                                          |                                                                                           | $T_{VJ} = 125^{\circ}C$                           |        | 360     |              | pF         |  |
| Q <sub>g</sub>                       | total gate charge                                                           | $V_{DS} = 480 \text{ V}; I_{D} = 44 \text{ A}$                                            | _                                                 |        | 290     | 190          | nC         |  |
| $Q_{qs}$                             | gate source charge                                                          | $V_{DS} = 480 \text{ V}; I_D = 44 \text{ A}$<br>$V_{GS} = 10 \text{ V}; R_G = 1.6 \Omega$ | $T_{VJ} = 25^{\circ}C$                            |        | 36      |              | nC         |  |
| $\mathbf{Q}_{gd}$                    | gate drain (Miller) charge                                                  | V <sub>GS</sub> = 10 V, H <sub>G</sub> = 1.0 12                                           |                                                   |        | 150     |              | nC         |  |
| $\mathbf{t}_{d(on)}$                 | turn-on delay time                                                          |                                                                                           |                                                   |        | tbd     |              | ns         |  |
| t,                                   | current rise time                                                           | Inductive switching                                                                       |                                                   |        | tbd     |              | ns         |  |
| t <sub>d(off)</sub>                  | turn-off delay time                                                         | boost mode with diode D                                                                   |                                                   |        | tbd     |              | ns         |  |
| t <sub>f</sub>                       | current fall time                                                           | $V_{DS} = 380 \text{ V}; I_D = 44 \text{ A}$                                              | $T_{VJ} = 25^{\circ}C$                            |        | tbd     |              | ns         |  |
| E <sub>on</sub>                      | turn-on energy per pulse                                                    | $V_{GS} = 13 \text{ V}; R_{G} = 1.6 \Omega$                                               | •••                                               |        | tbd     |              | m.         |  |
| E <sub>off</sub>                     | turn-off energy per pulse                                                   |                                                                                           |                                                   |        | tbd     |              | mJ         |  |
| E <sub>rec(off)</sub>                | reverse recovery losses at turn-off                                         |                                                                                           |                                                   |        | tbd     |              | mJ         |  |
| R <sub>thJC</sub>                    | thermal resistance junction to case thermal resistance junction to heatsink | with hastoink compound IVVC to                                                            | ot ootun                                          |        | 0.6     | 0.4          | K/W<br>K/W |  |
| R <sub>thJH</sub>                    | · ·                                                                         | with heatsink compound; IXYS te                                                           | si seiup                                          |        | 0.6     |              | r\/ vv     |  |
|                                      | Orain Diode of MOSFETT                                                      |                                                                                           |                                                   |        | Rating: | 1 :          |            |  |
| Symbol                               | Definitions                                                                 | Conditions                                                                                |                                                   | min.   | typ.    | max.         |            |  |
| I <sub>S25</sub><br>I <sub>S80</sub> | continuous source current                                                   | <b>Y</b>                                                                                  | $T_{C} = 25^{\circ}C$<br>$T_{C} = 80^{\circ}C$    |        |         | 70<br>tbd    | A          |  |
| V <sub>SD</sub>                      | forward voltage drop                                                        | $I_F = 44 \text{ A}; V_{GS} = 0 \text{ V}$                                                | $T_{VJ} = 25^{\circ}C$                            |        | 0.9     | 1.1          | V          |  |
| t <sub>rr</sub>                      | reverse recovery time                                                       | $I_{\rm F} = 44 \text{ A}; V_{\rm B} = 400 \text{ V}$                                     | T <sub>v,j</sub> = 25°C                           |        |         | 950          | ns         |  |
| $\mathbf{Q}_{RM}$                    | reverse recovery charge (intrinsic diode)                                   | $v_{\rm F} = 44  \text{A}, v_{\rm R} = 400  \text{V}$<br>- $v_{\rm H} = 100  \text{A/µs}$ | 1 <sub>VJ</sub> = 25 O                            |        | 32      |              | μC         |  |
| I <sub>RM</sub>                      | max. reverse recovery current                                               | ог/ at = 100 / V до                                                                       |                                                   |        | 62      |              | Α          |  |
| Diode D                              |                                                                             |                                                                                           |                                                   | Rating |         | js .         |            |  |
| Symbol                               | Definitions                                                                 | Conditions                                                                                |                                                   | min.   | typ.    | max.         |            |  |
| V <sub>RRM</sub>                     | max. repetitive reverse voltage                                             |                                                                                           | $T_{VJ} = 25^{\circ}C$                            |        |         | 600          | ٧          |  |
| I <sub>F25</sub>                     |                                                                             | DC                                                                                        | $T_C = 25^{\circ}C$                               |        |         | 65           | A          |  |
| I <sub>F80</sub>                     | continuous source current                                                   | DC                                                                                        | $T_{\rm C} = 80^{\circ}{\rm C}$                   |        |         | 45           | А          |  |
| V <sub>F</sub>                       | forward voltage                                                             | I <sub>F</sub> = 44 A (Chip)                                                              | $T_{VJ} = 25^{\circ}C$                            |        | 1.70    | 2.0          | ٧          |  |
| <u> </u>                             |                                                                             |                                                                                           | $T_{VJ}^{V3} = 125^{\circ}C$                      |        | 1.65    |              | V          |  |
| I <sub>R</sub>                       | reverse current                                                             | $V_R = V_{RRM}$                                                                           | $T_{VJ} = 25^{\circ}C$<br>$T_{VJ} = 125^{\circ}C$ |        |         | 100<br>8     | μA<br>mA   |  |
|                                      | max. reverse recovery current                                               | I <sub>F</sub> = 30 A; V <sub>R</sub> = 350 V                                             | T <sub>v,j</sub> = 100°C                          |        | tbd     |              | Δ          |  |
| I <sub>RM</sub>                      | max. reverse receivery carrein                                              |                                                                                           | -5                                                | 1      | I       |              |            |  |
| I <sub>RM</sub>                      | max. revalue recevery cameric                                               | -di/dt = 240 A/µs                                                                         |                                                   |        |         | <u> </u>     |            |  |
| I <sub>RM</sub>                      | reverse recovery time                                                       | -di/dt = 240 A/ $\mu$ s<br>$I_F = 1 A; V_R = 30 V; -di/dt = 100 A/dt$                     | $\mu s T_{VJ} = 100^{\circ}C$                     |        | tbd     |              | ns         |  |
|                                      |                                                                             | · · · · · · · · · · · · · · · · · · ·                                                     | μs T <sub>vJ</sub> = 100°C                        |        | tbd     | 0.6          | ns<br>K/W  |  |

Data according ot IEC 60747 and per semiconductor unless otherwise specified


IXYS reserves the right to change limits, test conditions and dimensions.



| Package SMPD          |                                                                 |                                                                                     |             | Ratings      |            |          |  |
|-----------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------|--------------|------------|----------|--|
| Symbol                | Definitions                                                     | Conditions                                                                          | min.        | typ.         | max.       |          |  |
| T <sub>stg</sub>      | storage temperature virtual junction temperature                |                                                                                     | -55<br>-55  |              | 125<br>150 | °C<br>°C |  |
| Weight                |                                                                 |                                                                                     |             | 8            |            | g        |  |
| F <sub>c</sub>        | mounting force with clip                                        |                                                                                     | 40          |              | 130        | N        |  |
| d <sub>Spp/App</sub>  | creepage distance on surface /<br>striking distance through air | terminal to terminal terminal to backside                                           | 1.65<br>4.0 |              |            | mm<br>mm |  |
| V <sub>ISOL</sub>     | isolation voltage                                               | $t = 1$ second $t = 1$ minute 50/60 Hz; RMS; $I_{ISOL} < 1$ mA                      |             | 3000<br>2500 |            | V        |  |
| C <sub>P</sub>        | coupling capacity                                               | between shorted terminals and backside metal                                        |             | 90           |            | pF       |  |
| СТІ                   |                                                                 |                                                                                     | 400         |              |            |          |  |
| R <sub>pin-chip</sub> | resistance pin to chip                                          | $V = (R_{DSon} + 2 \cdot R) \cdot I_D \text{ resp. } V = V_F + 2 \cdot R \cdot I_F$ |             | 1            |            | mΩ       |  |





| Ordering | Part Name        |   | Marking on Product | <b>Delivering Mode</b> | Base Qty | Ordering Code |
|----------|------------------|---|--------------------|------------------------|----------|---------------|
| Standard | MKG40RK600LB-TRR | V | MKG40RK600LB       | Tape&Reel              | 200      | 514630        |





#### **Outlines SMPD**



