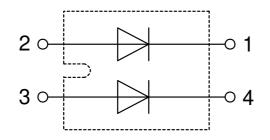


Sonic Fast Recovery Diode

V _{RRM}	= .	1200 V
I _{FAV}	<i>=</i> 2x	50 A
t _{rr}	=	200 ns

preliminary

High Performance Fast Recovery Diode Low Loss and Soft Recovery Parallel legs


Part number

DHG100X1200NA

Backside: Isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: SOT-227B (minibloc)

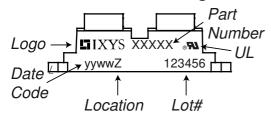
- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper
- internally DCB isolatedAdvanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littlefuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.

preliminary


Fast Diode				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocki	ng voltage	$T_{VJ} = 25^{\circ}C$			1200	V
V _{RRM}	max. repetitive reverse blocking ve	oltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _R	reverse current, drain current	V _R = 1200 V	$T_{vJ} = 25^{\circ}C$			100	μA
		V _R = 1200 V	$T_{vJ} = 125^{\circ}C$			1.2	mA
V _F	forward voltage drop	I _F = 50 A	$T_{vJ} = 25^{\circ}C$			2.16	V
		I _F = 100 A				2.78	V
		$I_{\rm F} = 50 {\rm A}$	T _{vJ} = 125°C			2.13	V
		$I_{F} = 100 \text{ A}$				2.97	V
I FAV	average forward current	$T_c = 65^{\circ}C$	T _{vJ} = 150°C			50	А
		rectangular d = 0.5					
V _{F0}	threshold voltage		$T_{vJ} = 150 ^{\circ}C$			1.26	V
r _F	slope resistance	ss calculation only				15.3	mΩ
\mathbf{R}_{thJC}	thermal resistance junction to case	2				0.6	K/W
R _{thCH}	thermal resistance case to heatsin	k			0.1		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			200	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}; (50 \text{ Hz}), \text{ sine}; V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			500	Α
C	junction capacitance	$V_{R} = 600 V f = 1 MHz$	$T_{VJ} = 25^{\circ}C$		27		pF
I _{RM}	max. reverse recovery current		$T_{VJ} = 25 °C$		45		Α
		$I_{\rm F} = 60 \text{A}; V_{\rm R} = 600 \text{V}$	T _{vJ} = 125 °C		60		А
t _{rr}	reverse recovery time	I _F = 60 A; V _R = 600 V -di _F /dt = 1200 A/μs	$T_{VJ} = 25 °C$		200		ns
	,	1	T _{vJ} = 125 °C		350		ns

preliminary

Package	SOT-227B (minibloc)				I	Ratings	5	
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					100	Α
\mathbf{T}_{v_J}	virtual junction temperature				-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
M _T	terminal torque				1.1		1.5	Nm
d _{Spp/App}	oroonogo diatanoo on ourfooo	striking distance through air	terminal to terminal	10.5	3.2			mm
d _{Spb/Apb}	creepage distance on surface	Striking distance through an	terminal to backside	8.6	6.8			mm
V	isolation voltage	t = 1 second			3000			V
		t = 1 minute	50/60 Hz, RMS; liso∟ ≤ 1 mA		2500			v

Product Marking

Part description

D = Diode H = Sonic Fast Recovery Diode

G = extreme fast

100 = Current Rating [A]

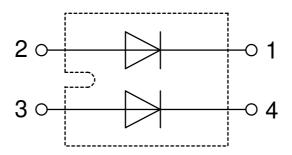
X = Parallel legs 1200 = Reverse Voltage [V]

NA = SOT-227B (minibloc)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DHG100X1200NA	DHG100X1200NA	Tube	10	507759

Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 150^{\circ}C$
)[R_o]-	Fast Diode		
V _{0 max}	threshold voltage	1.26		V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *			mΩ

IXYS reserves the right to change limits, conditions and dimensions.



preliminary

Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches		
Dim.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
B	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
Е	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
J	11.68	12.22	0.460	0.481	
К	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
Μ	12.50	13.10	0.492	0.516	
Ν	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Ρ	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
V	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Ζ	2.50	2.70	0.098	0.106	

IXYS reserves the right to change limits, conditions and dimensions.

preliminary

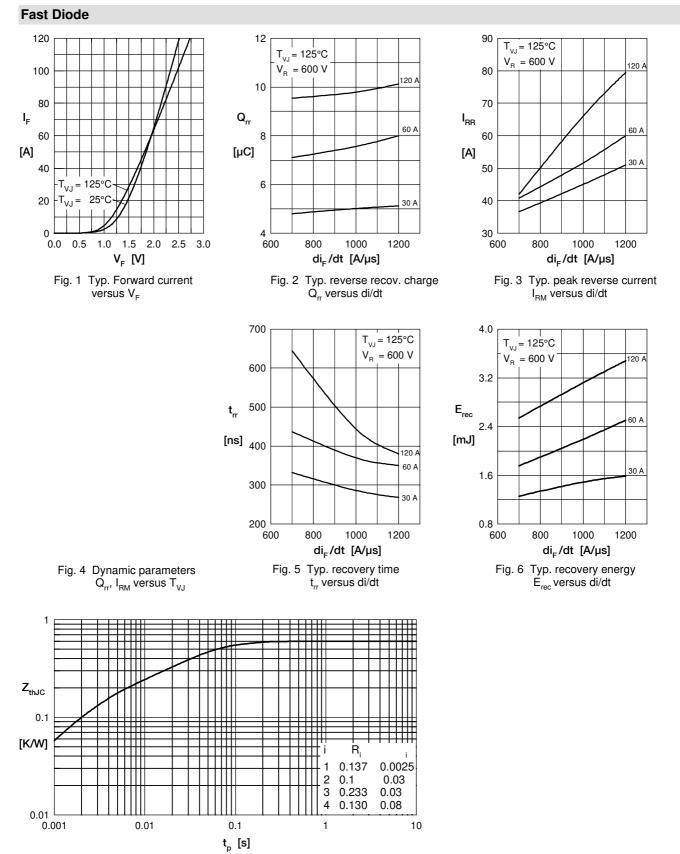


Fig. 7 Typ. transient thermal impedance junction to case

IXYS reserves the right to change limits, conditions and dimensions.