

Data Sheet Issue: 1

Diode Modules MD#510

Absolute Maximum Ratings

V _{rrm} V _{drm} [V]			
1800	510-18N3	510-18N3	510-18N3

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V _{RRM}	Repetitive peak reverse voltage ¹⁾	1800	V
V _{RSM}	Non-repetitive peak reverse voltage ¹⁾	1900	V V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
I _{F(AV)M}	Maximum average forward current, T_{C} = 85°C ²⁾	545	А
I _{F(AV)M}	Maximum average forward current. T _C = 100°C ²⁾	445	А
I _{F(RMS)M}	Nominal RMS forward current, T_{C} = 55°C ²⁾	1135	А
I _{F(d.c.)}	D.C. forward current, $T_C = 55^{\circ}C$	890	А
I _{FSM}	Peak non-repetitive surge $t_p = 10 \text{ ms}$, $V_{RM} = 60\% V_{RRM}$ ³⁾	10.9	kA
I _{FSM2}	Peak non-repetitive surge t_p = 10 ms, $V_{RM} \le 10V^{-3}$	12.0	kA
l²t	I ² t capacity for fusing t_p = 10 ms, V_{RM} = 60% V_{RRM} ³⁾	594	kA²s
l ² t	I ² t capacity for fusing t_p = 10 ms, $V_{RM} \le$ 10 V ³⁾	720	kA ² s
VISOL	Isolation Voltage 4)	3000	V
T _{vj op}	Operating temperature range	-40 to +150	°C
T _{stg}	Storage temperature range	-40 to +150	°C

Notes: 1) De-rating factor of 0.13% per °C is applicable for T_{vj} below 25°C. 2) Single phase; 50 Hz, 180° half-sinewave.

3) Half-sinewave, 150°C T_{vj} initial.

4) AC RMS voltage, 50 Hz, 1min test

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS ¹⁾	UNITS
V _{FM}	Maximum peak forward voltage	-	-	1.20	I _{TM} = 785 A, T _{VJ} = 25°C	V
V _{T0}	Threshold voltage	-	-	0.75		V
r _T	Slope resistance	-	-	0.25		mΩ
I _{RRM}	Peak reverse current	-	-	30	Rated V _{RRM}	mA
		-	0.1100	-	Single Arm	K/W
R_{thJC}	Thermal resistance, junction to case	-	0.0550	-	Whole Module	K/W
_		-	0.040	-	Single Arm	K/W
R _{thCH}	Thermal resistance, case to heatsink	-	0.020	-	Whole Module	K/W
F1	Mounting force (to heatsink)	-	6.00	-		Nm
F ₂	Mounting force (to terminals)	-	9.00	-	2)	Nm
Wt	Weight	-	800	-		g

Notes:

1) Unless otherwise indicated T_{vj} =125°C. 2) Screws must be lubricated.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	Vdrm Vrrm	Vdsm Vrsm	V _D V _R	
	V	V	DC V	
18	1800	1900	1150	

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_{vj} below 25°C.

4.0 Repetitive dv/dt

Standard dv/dt is 1000V/µs.

5.0 Snubber Components

When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

6.0 Computer Modelling Parameters

6.1 Thyristor Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{V_{T0}^2 + 4 \cdot ff^2 \cdot r_T \cdot W_{AV}}}{2 \cdot ff^2 \cdot r_T} \qquad \text{and:} \qquad \begin{aligned} W_{AV} = \frac{\Delta T}{R_{th}} \\ \Delta T = T_{j\max} - T_C \end{aligned}$$

Where $V_{T0} = 0.75 V$, $r_T = 0.25 m\Omega$.

 R_{th} = Supplementary thermal impedance, see table below and

ff = Form factor, see table below.

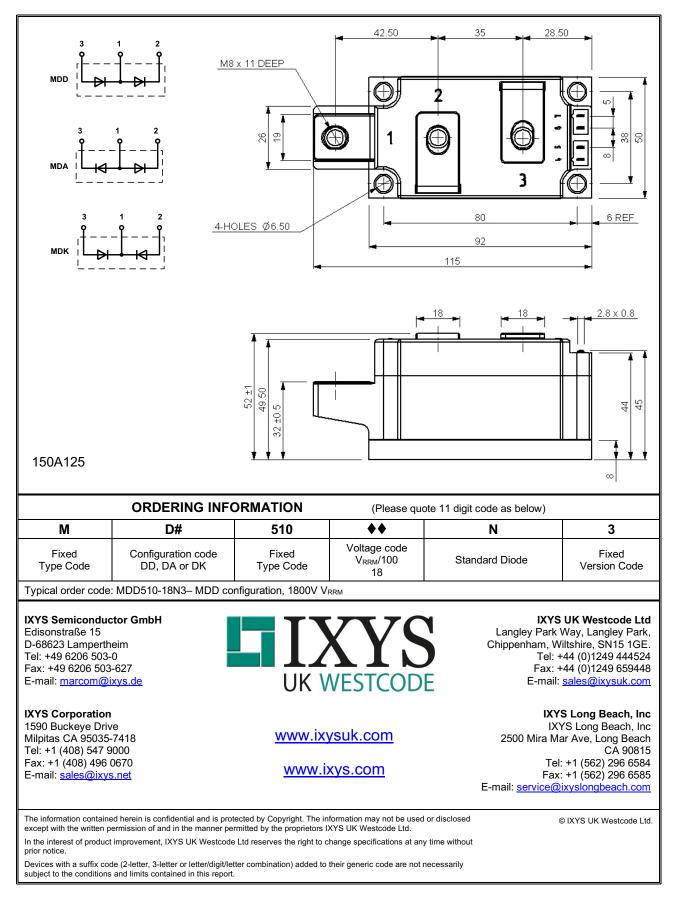
Supplementary Thermal Impedance									
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.		
Square wave	3.46	2.45	2	1.73	1.41	1.15	1		
Sine wave	3.98	2.78	2.22	1.88	1.57				

Form Factors							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave	3.464	2.449	2	1.732	1.414	1.149	1
Sine wave	3.98	2.778	2.22	1.879	1.57		

6.2 D.C. Thermal Impedance Calculation

$$r_t = \sum_{p=1}^{p=n} r_p \cdot \left(1 - e^{\frac{-t}{\tau_p}}\right)$$

Where p = 1 to *n* and:


n = number of terms in the series

- t = Duration of heating pulse in seconds
- r_t = Thermal resistance at time t
- r_p = Amplitude of p_{th} term
- τ_p = Time Constant of r_{th} term

The coefficients for this device are shown in the table below:	The	coefficients	for this	device	are shown	in	the	table be	elow:
--	-----	--------------	----------	--------	-----------	----	-----	----------	-------

			D.C.			
Term	1	2	3	4	5	6
r _p	0.1293	0.01314	0.02771	-0.05535	0.0528	0.002749
$ au_{ ho}$	2.823	1.393	0.3322	0.0611	0.05731	0.002713

Outline Drawing & Ordering Information

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.