

Data Sheet Issue: 4

Rectifier Diode Types W0503R/SC160 to W0503R/SC240 Previous Type No. SW16-24PHN/R380

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
Vrrm	Repetitive peak reverse voltage, (note 1)	1600-2400	V
Vrsm	Non-repetitive peak reverse voltage, (note 1)	1700-2500	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
IF(AV)M	Maximum average forward current, T _{case} =55°C, (note 2)	503	А
I _{F(AV)M}	Maximum average forward current. T _{case} =100°C, (note 2)	369	А
I _{F(RMS)M}	Nominal RMS forward current, T _{case} =25°C, (note 2)	912	А
IF(d.c.)	D.C. forward current, T _{case} =25°C, (note 3)	766	А
IFSM	Peak non-repetitive surge t _p =10ms, V _{rm} =0.6V _{RRM} , (note 3)	5500	А
IFSM2	Peak non-repetitive surge t _p =10ms, V _{rm} ≤10V, (note 3)	6050	А
l²t	$I^{2}t$ capacity for fusing t _p =10ms, V _{rm} =0.6V _{RRM} , (note 3)	151×10 ³	A ² s
l²t	l²t capacity for fusing t _p =10ms, V _{rm} ≤10V, (note 3)	183×10 ³	A ² s
T _{j op}	Operating temperature range	-30 to +180	°C
T _{stg}	Storage temperature range	-40 to +200	°C

Notes:-

1) De-rating factor of 0.13% per °C is applicable for T_j below 25°C.

2) Single phase; 50Hz, 180° half-sinewave.

3) Half-sinewave, 180°C T_j initial.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
V _{FM}	Maximum peak forward voltage	-	-	1.88	I _{TM} =1200A	V
V ₀	Threshold voltage	-	-	0.99		V
rs	Slope resistance	-	-	0.74		mΩ
I _{RRM}	Peak reverse current	-	-	15	Rated V _{RRM}	mA
RthJK	Thermal resistance, junction to heatsink	-	-	0.13	DC and 180° Sine Wave	K/W
F	Mounting torque	25	-	27.7		Nm
Wt	Weight	-	250	-		g

Notes:-

1) Unless otherwise indicated T_j =180°C.

2) Threads must not be lubricated.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	V _{RRM} V	V _{RSM} V	V _R DC V
16	1600	1700	1050
20	2000	2100	1250
24	2400	2500	1450

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_j below 25°C.

5.0 Snubber Components

When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

and:

6.0 Computer Modelling Parameters

6.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{V_{T0}^{2} + 4 \cdot ff^{2} \cdot r_{T} \cdot W_{AV}}}{2 \cdot ff^{2} \cdot r_{T}}$$

$$W_{AV} = \frac{\Delta T}{R_{th}}$$
$$\Delta T = T_{j\max} - T_C$$

Where V_{T0} =0.99V, r_T=0.74m Ω ,

 R_{th} = Supplementary thermal impedance, see table below.

ff = Form factor, see table below.

Supplementary Thermal Impedance							
Conduction Angle 6 phase (60°) 3 phase (120°) ½ wave (180°) d.c.							
Square wave	0.174	0.153	0.143	0.130			
Sine wave	0.172	0.153	0.149				

Form Factors							
Conduction Angle	6 phase (60°)	3 phase (120°)	½ wave (180°)	d.c.			
Square wave	2.449	1.732	1.414	1			
Sine wave	2.778	1.879	1.57				

6.2 Calculating V_F using ABCD Coefficients

The on-state characteristic I_F vs. V_F , on page 5 is represented by a set of constants A, B, C, D, forming the coefficients of the representative equation for V_F in terms of I_F given below:

$$V_F = A + B \cdot \ln(I_F) + C \cdot I_F + D \cdot \sqrt{I_F}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_F agree with the true device characteristic over a current range, which is limited to that plotted.

25°C Coefficients		180°C Coefficients	
Α	0.9965991	Α	0.8873625
В	0.05728886	В	0.04107969
С	0.55959×10⁻³	С	0.880763×10 ⁻³
D	-0.0116016	D	-0.01037081

<u>Curves</u>

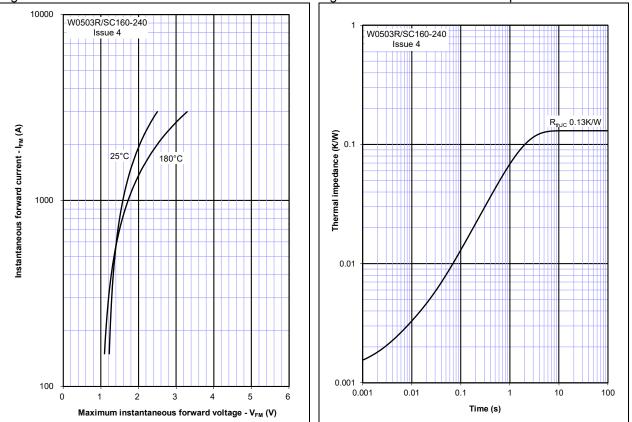
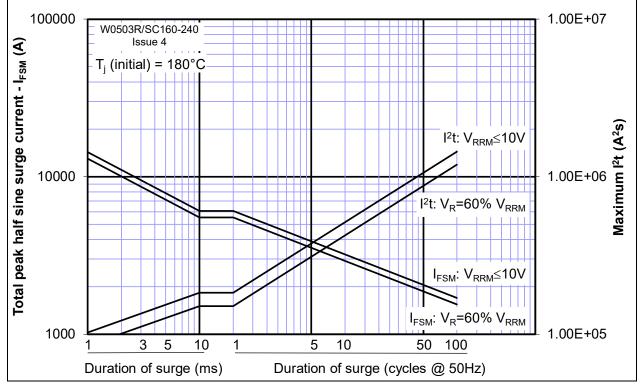
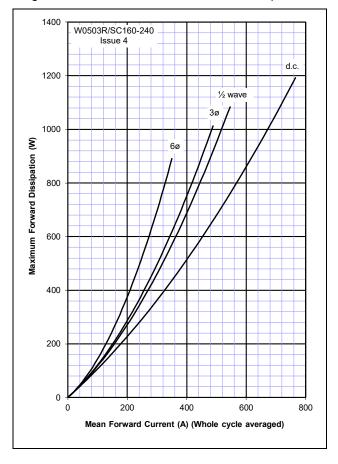
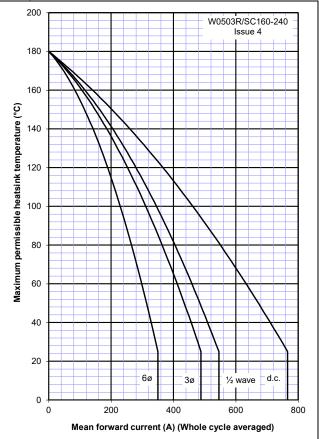



Figure 1 – Forward characteristics of Limit device

Figure 2 – Transient Thermal Impedance

Figure 3 – Maximum surge and I²t Ratings

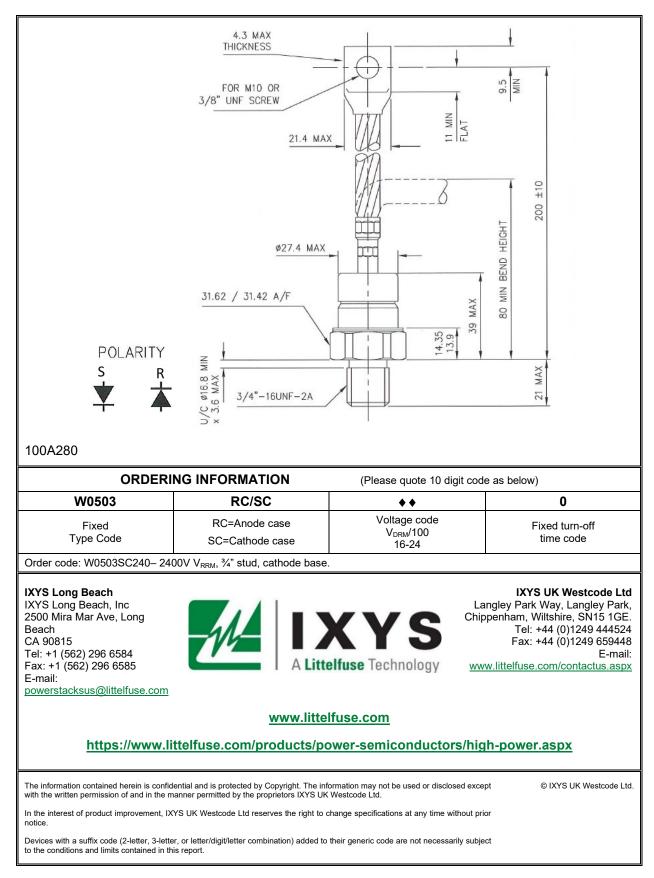

Figure 4 – Forward current vs. Power dissipation

Figure 5 – Forward current vs. Heatsink temperature

Outline Drawing & Ordering Information

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics