

X2PT IGBT

Very High Voltage Single IGBT

Part number IXG 50I4500KN

IXG50I4500KN

preliminary

Backside: isolated see important note page 3

Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Short circuit rated for 10 µsec.
- Very low gate charge
- Low EMI

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
- Switched-mode and resonant-mode
- power supplies
- Inductive heating, cookers
- Pumps, Fans
- Pulse application
- Capacitor discharge

Package: ISOPLUS264

- Isolation voltage 4200 V~
- see important note on page 3
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently

evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,

and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, test conditions and dimensions. Data according to IEC 60747 and per semiconductor unless otherwise specified

preliminary

IGBT					Rating	S	
Symbol	Definitions	Conditions		min.	typ.	max.	
V _{CES}	collector emitter voltage		$T_{VJ} = 25^{\circ}C$			4500	V
V _{GES} V _{GEM}	max. DC gate voltage max. transient gate emitter voltage		$T_{VJ} = 25^{\circ}C$			±20 ±30	V V
I _{C25} I _{C80} I _{C100}	collector current		$T_{c} = 25^{\circ}C$ $T_{c} = 80^{\circ}C$ $T_{c} = 100^{\circ}C$			74 52 42	A A A
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			368	W
V _{CE(sat)}	collector emitter saturation voltage	$I_{\rm C} = 55 \text{ A}; V_{\rm GE} = 15 \text{ V}$	$\begin{array}{rl} T_{vJ} = & 25^{\circ}C \\ T_{vJ} = & 125^{\circ}C \end{array}$		2.8 3.65	3.2	V V
V _{GE(th)}	gate emitter threshold voltage	$I_{c} = 10 \text{ mA}; V_{GE} = V_{CE}$	$T_{VJ} = 25^{\circ}C$	5.5	6.3	7	V
I _{CES}	collector emitter leakage current	$V_{CE} = V_{CES}; V_{GE} = 0 V$	$\begin{array}{rl} T_{vJ} = & 25^{\circ}C \\ T_{vJ} = & 125^{\circ}C \end{array}$		0.5	0.1	mA mA
I _{GES}	gate emitter leakage current	$V_{GE} = \pm 20 \text{ V}$				500	nA
Q _{Gon}	total gate charge	$V_{CE} = 2800 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} = 55 \text{ A}$			500		nC
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \end{array}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	$ \left. \begin{array}{l} \text{inductive load} \\ V_{\text{CE}} = 2800 \text{ V; } I_{\text{C}} = 55 \text{ A} \\ V_{\text{GE}} = \pm 15 \text{ V; } R_{\text{G}} = 47 \Omega\text{, } C_{\text{GE}} = 6.8 \text{ n} \end{array} \right. $	T _{vJ} = 25°C F		440 90 900 1310 123* 69		ns ns ns mJ mJ
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \end{array}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	$\left. \begin{array}{l} \text{inductive load} \\ \text{V}_{\text{CE}} = 2800 \text{ V; I}_{\text{C}} = 55 \text{ A} \\ \text{V}_{\text{GE}} = \pm 15 \text{ V; R}_{\text{G}} = 47 \Omega\text{; } \text{C}_{\text{GE}} = 6.8 \text{ n} \end{array} \right. \right.$	T _{vJ} = 125°C F		300 130 940 1350 150* 73		ns ns ns mJ mJ
RBSOA I _{cм}	reverse bias safe operating area	$ \int V_{GE} = \pm 15 \text{ V}; $ $\int V_{CEmax} = 4500 \text{ V} $	$T_{VJ} \le 150^{\circ}C$			110	А
SCSOA t _{sc} I _{sc}	short circuit safe operation area short circuit duration short circuit current	$\label{eq:V_CEmax} \left\{ \begin{array}{l} V_{\text{CEmax}} = 4500 \text{ V} \\ V_{\text{CE}} = 3400 \text{ V}; \text{ V}_{\text{GE}} = \pm 15 \text{ V} \\ R_{\text{G}} = 47 \ \Omega; \text{ none repetitive} \end{array} \right.$	$T_{VJ} \le 150^{\circ}C$		200	10	μs A
R _{thJC}	thermal resistance junction to case					0.34	K/W
R _{thJH}	thermal resistance junction to heatsin	k			0.45		K/W

Note *: Measured with DHG50I4500KN as freewheeling diode

preliminary

Package	ige ISOPLUS264			Ratings				
Symbol	Definitions	Conditions	Conditions			typ.	max.	Unit
IRMS	RMS current	per terminal					70	A
C _P	coupling capacity	between shorted	pins and	d back side metallization			1	pF
R _{pin-chip}	resistance terminal to chip	esistance terminal to chip $V_{CE} = V_{CE(sat)} + 2 \cdot I_{C} \cdot R_{pin - chip}$					1	mΩ
\mathbf{T}_{VJM}	max. virtual junction temperature			-40		150	°C	
T _{OP}	operation temperature			-40		125	°C	
T _{stg}	storage temperature			-40		150	°C	
Weight	ht				10	1	g	
Fc	mounting force with clip			40		130	N	
d _{Spp/App}	creepage distance on surface / strikiing distance through air (pin 2 to pin 3)			10.2			mm	
d _{Spb/Apb}				terminal to backside	6.4		1	mm
VISOL	isolation voltage	t = 1 second	50/60	Hz, RMS, $I_{ISOL} \le 1 \text{ mA}$	4200		, , ,	V

Important note:

External clearances between pins and between pins and tab may be insufficient to prevent flash over under all conditions. It is the customer's responsibility to apply additional insulation appropriate to the application.

ISOPLUS264 is designed to isolate a max continuous operation voltage (DC) of 1700 V. The peak test voltage of 4200 V assures safety for transient voltages only. The package is not tested for partial discharge.

If the product is used outside the package design voltage range the customer must use additional electrical insulation. Extra insulation layers should be used both between the tab and any heatsink and between any conducting clip and the top surface of the package particularly when metal parts (such as a heatsink or a clip) are in contact.

Please note that the intention of this package is to provide customers with an encapsulated die for high voltage application but the responsibility rests entirely with the customer to ensure for safe operation.

Bodily injury cannot be excluded if this warning is disregarded. Device implementation is the end user's responsibility.

For a low FIT rate over lifetime failures due to SEB (Single Event Burnout) and an adequate voltage derating should be considered.

Part number					
I = IGBT					
X = XPT IGBT					
G = Gern 2 / std					
50 = Current Rating [A]					
I = Single IGBT					
4500 = Reverse Voltage [V]					
KN = ISOPLUS264 (3HV					

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	IXG50I4500KN	IXG50I4500KN	Tube	25	IXG50I4500KN

Equival	ent Circuits for Simulation	*on die level		$T_{vJ} = 150 \ ^{\circ}C$
	-[R ₀]-		IGBT	Diode
$V_{0 max}$	threshold voltage		1.7	V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *		45	mΩ

IXYS reserves the right to change limits, test conditions and dimensions. Data according to IEC 60747 and per semiconductor unless otherwise specified

preliminary

Outlines ISOPLUS264

Dim	Millir	Millimeter		hes
Dim.	min	max	min	max
Α	4.83	5.21	0.190	0.205
A1	2.59	3.00	0.102	0.118
A2	1.17	1.40	0.046	0.055
b	1.14	1.40	0.045	0.055
b1	1.60	1.83	0.063	0.072
b2	1.47	1.73	0.058	0.068
С	0.51	0.74	0.020	0.029
D	25.91	26.42	1.020	1.040
Е	19.56	20.29	0.770	0.799
е	3.81	BSC	0.150 BSC	
e1	11.43	BSC	0.450 BSC	
L	19.81	20.83	0.780	0.820
L1	2.03	2.59	0.080	0.102
Q	5.33	5.97	0.210	0.235
Q1	12.45	13.03	0.490	0.513
R	3.81	4.57	0.150	0.180
R1	2.54	3.30	0.100	0.130
S	16.97	17.53	0.668	0.690
Т	20.34	20.85	0.801	0.821
U	1.65	2.03	0.065	0.080

<u>C</u>

IXYS reserves the right to change limits, test conditions and dimensions. Data according to IEC 60747 and per semiconductor unless otherwise specified

preliminary

© 2022 IXYS All rights reserved