Date:- 30 ${ }^{\text {th }}$ Jan 2019
Data Sheet Issue:-3

Fast Turn-off Thyristor Type P0431SC04x-06x

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS
V DRM	Repetitive peak off-state voltage, (note 1)	$400-600$
V $_{\text {DSM }}$	Non-repetitive peak off-state voltage, (note 1)	$400-600$
V $_{\text {RRM }}$	Repetitive peak reverse voltage, (note 1)	$400-600$
V $_{\text {RSM }}$	Non-repetitive peak reverse voltage, (note 1)	$500-700$

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
$\mathrm{I}_{\text {(AV) }}$	Mean on-state current, $\mathrm{T}_{\text {sink }}=55^{\circ} \mathrm{C}$, (note 2)	431	A
$I_{\text {taV }}$	Mean on-state current. $\mathrm{T}_{\text {sink }}=85^{\circ} \mathrm{C}$, (note 2)	276	A
It(RMS)	Nominal RMS on-state current, $\mathrm{T}_{\text {sink }}=25^{\circ} \mathrm{C}$, (note 2)	886	A
$\mathrm{I}_{\text {(d.c. })}$	D.C. on-state current, $\mathrm{T}_{\text {sink }}=25^{\circ} \mathrm{C}$, (note 3)	689	A
$\mathrm{I}_{\text {TSM }}$	Peak non-repetitive surge $\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}, \mathrm{~V}_{\mathrm{RM}}=0.6 \mathrm{~V}_{\mathrm{RRM}}$, (note 3)	6500	A
ITSM2	Peak non-repetitive surge $\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}, \mathrm{~V}_{\mathrm{RM}} \leq 10 \mathrm{~V}$, (note 3)	7150	A
$1{ }^{2} \mathrm{t}$	$1^{2} \mathrm{t}$ capacity for fusing $\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}, \mathrm{~V}_{\mathrm{Rm}}=0.6 \mathrm{~V}_{\text {RRM }}$, (note 3)	211×10^{3}	$A^{2} \mathrm{~s}$
$1{ }^{2} \mathrm{t}$	$I^{2} \mathrm{t}$ capacity for fusing $\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}, \mathrm{~V}_{\mathrm{Rm}} \leq 10 \mathrm{~V}$, (note 3)	256×10^{3}	$A^{2} \mathrm{~s}$
(di/dt) ${ }_{\text {cr }}$	Maximum rate of rise of on-state current (repetitive), (Note 4)	500	A/ $/$ s
	Maximum rate of rise of on-state current (non-repetitive), (Note 4)	1000	A/ $\mu \mathrm{s}$
VRGM	Peak reverse gate voltage	5	V
$\mathrm{P}_{\mathrm{G}(\mathrm{AV})}$	Mean forward gate power	1.5	W
$\mathrm{P}_{\text {gm }}$	Peak forward gate power	60	W
$V_{G D}$	Non-trigger gate voltage, (Note 7)	0.25	V
T_{HS}	Operating temperature range	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-40 to +150	${ }^{\circ} \mathrm{C}$

Notes:-

1) De-rating factor of 0.13% per ${ }^{\circ} \mathrm{C}$ is applicable for T_{j} below $25^{\circ} \mathrm{C}$.
2) Single phase, $50 \mathrm{~Hz}, 180^{\circ}$ half-sinewave
3) Half-sinewave, $125^{\circ} \mathrm{C} T_{j}$ initial.
4) $\mathrm{V}_{\mathrm{D}}=67 \% \mathrm{~V}_{\mathrm{DRM}}, \mathrm{I}_{\mathrm{FG}}=2 \mathrm{~A}, \mathrm{t}_{\mathrm{r}} \leq 0.5 \mu \mathrm{~s}, \mathrm{~T}_{\text {case }}=125^{\circ} \mathrm{C}$.

Characteristics

	PARAMETER	MIN.	TYP.	MAX	TEST CONDITIONS (Note 1)	UNITS
$\mathrm{V}_{\text {TM }}$	Maximum peak on-state voltage	-	-	1.18	$\mathrm{I}_{\text {TM }}=600 \mathrm{~A}$	V
$\mathrm{V}_{\text {To }}$	Threshold voltage	-	-	0.95		\checkmark
$\mathrm{r}_{\text {T }}$	Slope resistance	-	-	0.377		$\mathrm{m} \Omega$
(dv/dt) ${ }_{\text {cr }}$	Critical rate of rise of off-state voltage	200	-	-	$V_{D}=80 \% V_{\text {DRM }}$	V/us
IDRM	Peak off-state current	-	-	30	Rated V ${ }_{\text {DRM }}$	mA
IRRM	Peak reverse current	-	-	30	Rated $\mathrm{V}_{\text {RRM }}$	mA
V_{GT}	Gate trigger voltage	-	-	3.0	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	V
$\mathrm{IGT}_{\text {g }}$	Gate trigger current	-	-	200	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{I}_{T}=3 \mathrm{~A}$	mA
1 H	Holding current	-	-	600	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	mA
Q_{ra}	Recovered charge, 50\% Chord	-	106	-	$\mathrm{I}_{\mathrm{T} M}=300 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=500 \mu \mathrm{~s}, \mathrm{di} / \mathrm{dt}=20 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{r}}=50 \mathrm{~V}$	$\mu \mathrm{C}$
t_{a}	Turn-off time (note 2)	-	-	12	$\begin{aligned} & \mathrm{I}_{\mathrm{TM}}=800 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=500 \mu \mathrm{~s}, \mathrm{di} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{r}}=50 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{dr}}=80 \% \mathrm{~V}_{\mathrm{DRM}}, \mathrm{~d} \mathrm{~V}_{\mathrm{dr}} / \mathrm{dt}=20 \mathrm{~V} / \mu \mathrm{s} \end{aligned}$	$\mu \mathrm{s}$
		12	-	15	$\begin{aligned} & \mathrm{I}_{\mathrm{TM}}=800 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=500 \mu \mathrm{~s}, \mathrm{di} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{r}}=50 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{dr}}=80 \% \mathrm{~V}_{\mathrm{DRM}}, \mathrm{~d} \mathrm{~V}_{\mathrm{dr}} / \mathrm{dt}=200 \mathrm{~V} / \mu \mathrm{s} \end{aligned}$	
$\mathrm{R}_{\text {thJc }}$	Thermal resistance, junction to case	-	-	0.12	$180^{\circ} \mathrm{C}$ Sine	K/W
F	Mounting torque	24.5	-	27		Nm
W_{t}	Weight	-	70	-		g

Notes:-

1) Unless otherwise indicated $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$.
2) The required ta_{a} (specified with $\mathrm{d} \mathrm{V}_{\mathrm{dr}} / \mathrm{dt}=200 \mathrm{~V} / \mu \mathrm{s}$) is represented by an ' x ' in the device part number. See ordering information for details of t_{q} codes.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	VDRM V $_{\text {DSM }}$ V $_{\text {RRM }}$	V RSM	V

2.0 Extension of Voltage Grades

This report is applicable to other and higher voltage grades when supply has been agreed by Sales/Production.

3.0 Extension of Turn-off Time

This Report is applicable to other $\mathrm{t}_{\mathrm{q}} /$ re-applied $\mathrm{dv} / \mathrm{dt}$ combinations when supply has been agreed by Sales/Production.

4.0 Repetitive dv/dt

Higher $\mathrm{dv} / \mathrm{dt}$ selections are available up to $1000 \mathrm{~V} / \mu \mathrm{s}$ on request.

5.0 De-rating Factor

A blocking voltage de-rating factor of $0.13 \% /{ }^{\circ} \mathrm{C}$ is applicable to this device for T_{j} below $25^{\circ} \mathrm{C}$.

6.0 Rate of rise of on-state current

The maximum un-primed rate of rise of on-state current must not exceed $1500 \mathrm{~A} / \mu \mathrm{s}$ at any time during turn-on on a non-repetitive basis. For repetitive performance, the on-state rate of rise of current must not exceed $1000 \mathrm{~A} / \mu \mathrm{s}$ at any time during turn-on. Note that these values of rate of rise of current apply to the total device current including that from any local snubber network.

7.0 Square wave ratings

These ratings are given for load component rate of rise of forward current of 100 and $500 \mathrm{~A} / \mu \mathrm{s}$.

8.0 Duty cycle lines

The 100% duty cycle is represented on all the ratings by a straight line. Other duties can be included as parallel to the first.

9.0 Maximum Operating Frequency

The maximum operating frequency is set by the on-state duty, the time required for the thyristor to turn off $\left(\mathrm{t}_{\mathrm{q}}\right)$ and for the off-state voltage to reach full value (t_{v}), i.e.

$$
f_{\max }=\frac{1}{t_{\text {pulse }}+t_{q}+t_{v}}
$$

10.0 On-State Energy per Pulse Characteristics

These curves enable rapid estimation of device dissipation to be obtained for conditions not covered by the frequency ratings.

Let E_{p} be the Energy per pulse for a given current and pulse width, in joules
Let $\mathrm{Rth}_{\text {th }}(-\mathrm{Hs})$ be the steady-state d.c. thermal resistance (junction to sink) and $\mathrm{T}_{\text {sink }}$ be the heat sink temperature.

Then the average dissipation will be:

$$
W_{A V}=E_{P} \cdot f \text { and } T_{S I N K(\max .)}=125-\left(W_{A V} \cdot R_{t h(J-H s)}\right)
$$

11.0 Reverse recovery ratings

(i) Qra is based on $50 \% \mathrm{I}_{\mathrm{rm}}$ chord as shown in Fig. 1 below.

Fig. 1
(ii) $Q_{r r}$ is based on a 150μ s integration time.
i.e.

$$
Q_{r r}=\int_{0}^{150 \mu s} i_{r r} \cdot d t
$$

(iii)

$$
K \text { Factor }=\frac{t 1}{t 2}
$$

12.0 Reverse Recovery Loss

12.1 Determination by Measurement

From waveforms of recovery current obtained from a high frequency shunt (see Note 1, Page 5) and reverse voltage present during recovery, an instantaneous reverse recovery loss waveform must be constructed. Let the area under this waveform be E joules per pulse. A new heat sink temperature can then be evaluated from:

$$
\begin{aligned}
& T_{\text {SINK(new) }}=T_{\text {SINK(original) }}-E \cdot\left(k+f \cdot R_{t h(J-H s)}\right) \\
& \quad \text { where } \mathrm{k}=0.227\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) / \mathrm{s} \\
& \begin{array}{l}
\mathrm{E}=\text { Area under reverse loss waveform per pulse in joules (W.s.) } \\
\mathrm{f}=\text { rated frequency Hz at the original heat sink temperature. } \\
\mathrm{Rth}(J-\mathrm{Hs})=\text { d.c. thermal resistance }\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) .
\end{array}
\end{aligned}
$$

The total dissipation is now given by:

$$
W_{(T O T)}=W_{(\text {original })}+E \cdot f
$$

12.2 Determination without Measurement

In circumstances where it is not possible to measure voltage and current conditions, or for design purposes, the additional losses E in joules may be estimated as follows.

Let E be the value of energy per reverse cycle in joules (curves in Figure 9).
Let f be the operating frequency in Hz

$$
T_{S I N K(\text { new })}=T_{S I N K(\text { original })}-\left(E \cdot R_{t h} \cdot f\right)
$$

Where $\mathrm{T}_{\text {SINK (new) }}$ is the required maximum heat sink temperature and $\mathrm{T}_{\text {sINK (original) }}$ is the heat sink temperature given with the frequency ratings.

A suitable R-C snubber network is connected across the thyristor to restrict the transient reverse voltage to a peak value $\left(V_{r m}\right)$ of 67% of the maximum grade. If a different grade is being used or V_{rm} is other than 67% of Grade, the reverse loss may be approximated by a pro rata adjustment of the maximum value obtained from the curves.

12.3 Reverse Recovery Loss by Measurement

This thyristor has a low reverse recovered charge and peak reverse recovery current. When measuring the charge care must be taken to ensure that:
(a) a.c. coupled devices such as current transformers are not affected by prior passage of high amplitude forward current.
(b) A suitable, polarised, clipping circuit must be connected to the input of the measuring oscilloscope to avoid overloading the internal amplifiers by the relatively high amplitude forward current signal
(c) Measurement of reverse recovery waveform should be carried out with an appropriate critically damped snubber, connected across diode anode to cathode. The formula used for the calculation of this snubber is shown below:

$$
R^{2}=4 \cdot \frac{V_{r}}{C_{S} \cdot d i / d t}
$$

Where: $\mathrm{V}_{\mathrm{r}}=$ Commutating source voltage
Cs = Snubber capacitance
R = Snubber resistance

13.0 Gate Drive

The recommended pulse gate drive is $30 \mathrm{~V}, 15 \Omega$ with a short-circuit current rise time of not more than $0.5 \mu \mathrm{~s}$. This gate drive must be applied when using the full di/dt capability of the device.

The duration of pulse may need to be configured with respect to the application but should be no shorter than $20 \mu \mathrm{~s}$, otherwise an increase in pulse current could be needed to supply the resulting increase in charge to trigger.

14.0 Computer Modelling Parameters

14.1 Calculating V_{T} using $A B C D$ Coefficients

The on-state characteristic $I_{T} V_{S} \mathrm{~V}_{\mathrm{T}}$, on page 7 is represented in two ways;
(i) the well established $\mathrm{V}_{\mathrm{T} 0}$ and r_{T} tangent used for rating purposes and
(ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_{T} in terms of I_{t} given below:

$$
V_{T}=A+B \cdot \ln \left(I_{T}\right)+C \cdot I_{T}+D \cdot \sqrt{I_{T}}
$$

The constants, derived by curve fitting software, are given in this report for hot and cold characteristics where possible. The resulting values for V_{T} agree with the true device characteristic over a current range, which is limited to that plotted.

$25^{\circ} \mathrm{C}$ Coefficients		$125^{\circ} \mathrm{C}$ Coefficients	
A	1.243789	A	1.009963
B	-0.03115438	B	-0.04014226
C	3.093093×10^{-4}	C	2.775859×10^{-4}
D	1.610958×10^{-3}	D	0.0101082

IXYS

Curves

Figure 1 - On-state characteristics of Limit device

Figure 2 - Gate characteristics - Trigger limits and Power curves

Figure 3 - Transient thermal impedance RthJk

Figure 4 - Reverse recovery energy per pulse, Erm

Figure 5 - Typical recovered charge, Qra (50\% chord)

Figure 7 - Sine wave frequency ratings

Figure 6 - Sine wave energy per pulse

Figure 8 - Sine wave frequency ratings

Figure 9 - Square wave frequency ratings

Figure 11 - Square wave frequency ratings

Figure 10 - Square wave frequency ratings

Figure 12 - Square wave frequency ratings

Figure 13 - Square wave energy per pulse

Figure 14 - Square wave energy per pulse

Figure 15 - Maximum surge and $\mathrm{I}^{2} \mathrm{t}$ Ratings

IXYS

Outline Drawing \& Ordering Information

(

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics

