Preliminary Technical Information

High Voltage Power MOSFET w/ Extended FBSOA

N-Channel Enhancement Mode
Avalanche Rated
Guaranteed FBSOA

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSs }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	2500	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	2500	V
$\mathrm{V}_{\text {Gss }}$	Continuous	± 30	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 40	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	5	A
$\underline{I_{\text {DM }}}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by $\mathrm{T}_{\text {JM }}$	20	A
I_{A}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	2.5	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	2.5	J
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	700	W
TJ		-55 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		-55 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	$50 / 60 \mathrm{~Hz}, \mathrm{RMS}, \mathrm{t}=1$ minute	2500	V ~
	$\mathrm{I}_{\text {ISOL }} \leq 1 \mathrm{~mA}, \quad \mathrm{t}=1 \mathrm{~s}$	3000	V~
M_{d}	Mounting Torque for Base Plate Terminal Connection Torque	$\begin{array}{r} 1.5 / 13 \\ 1.3 / 11.5 \end{array}$	Nm/lb.in. $\mathrm{Nm} / \mathrm{lb}$.in.
Weight		30	g

$\mathrm{V}_{\text {DSs }}$	$=2500 \mathrm{~V}$
$\mathrm{I}_{\mathrm{D} 25}$	$=5 \mathrm{~A}$
$\mathrm{R}_{\mathrm{DS}(0 \mathrm{On})}$	$\leq 8.8 \Omega$

miniBLOC
. ${ }^{-1}$ E153432

$$
\begin{array}{ll}
\mathrm{G}=\mathrm{Gate} & \mathrm{D}=\text { Drain } \\
\mathrm{S}=\text { Source } &
\end{array}
$$

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

Features

- International Standard Package
- Molding Epoxies Meet UL94 V-0 Flammability Classification
- Guaranteed FBSOA at $75^{\circ} \mathrm{C}$
- miniBLOC with Aluminum Nitride Isolation
- Low Package Inductance

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- High Voltage Power Supplies
- Capacitor Discharge
- Pulse Circuits

Safe Operating Area Specification

Symbol	Test Conditions	Characteristic Values		
		Min.	Typ.	Max.
SOA	$\mathrm{V}_{\mathrm{DS}}=2000 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.11 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=75^{\circ} \mathrm{C}, \mathrm{tp}=3 \mathrm{~s}$	220		

SOT-227B (IXTN) Outline

(M4 screws (4x) supplied)

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	1.240	1.255	31.50	31.88
B	.307	.323	7.80	8.20
C	.161	.169	4.09	4.29
D	.161	.169	4.09	4.29
E	.161	.169	4.09	4.29
F	.587	.595	14.91	15.11
G	1.186	1.193	30.12	30.30
H	1.496	1.505	38.00	38.23
J	.460	.481	11.68	12.22
K	.351	.378	8.92	9.60
L	.030	.033	0.76	0.84
M	.496	.506	12.60	12.85
N	.990	1.001	25.15	25.42
O	.078	.084	1.98	2.13
P	.195	.235	4.95	5.97
Q	1.045	1.059	26.54	26.90
R	.155	.174	3.94	4.42
S	.186	.191	4.72	4.85
T	.968	.987	24.59	25.07
U	-.002	.004	-0.05	0.1

Source-Drain Diode

$\begin{aligned} & \text { Symbol Test Conditions } \\ & \left(T_{j}=25^{\circ} \mathrm{C}\right. \text {, Unless Otherwise Specified) } \end{aligned}$		Characteristic Values		
		Min. ${ }^{\text {a }}$ Typ.	Max.	
$\mathrm{I}_{\text {s }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$		5	A
$\mathrm{I}_{\text {SM }}$	Repetitive, Pulse Width Limited by T_{JM}		20	A
$\mathrm{V}_{\text {sD }}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, Note 1		1.5	V
t_{rr}	$\mathrm{I}_{\mathrm{F}}=2.5 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$	1.2		$\mu \mathrm{S}$

Note: 1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXTN5N250

Fig. 1. Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Fig. 3. $\mathrm{R}_{\mathrm{DS}(o n)}$ Normalized to $\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$ Value vs. Junction Temperature

Fig. 5. Maximum Drain Current vs. Case Temperature

Fig. 2. Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$

Fig. 4. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ Normalized to $\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$ Value vs. Drain Current

Fig. 6. Input Admittance

Fig. 7. Transconductance

Fig. 9. Gate Charge

Fig. 11. Forward-Bias Safe Operating Area
@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

Fig. 8. Forward Voltage Drop of Intrinsic Diode

Fig. 10. Capacitance

Fig. 12. Forward-Bias Safe Operating Area
@ $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXTN5N250

Fig. 13. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

