

Data Sheet Issue:- 2

Insulated Gate Bi-Polar Transistor Type T0900EB45A

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V _{CES}	Collector – emitter voltage	4500	V
V _{DC link}	Permanent DC voltage for 100 FIT failure rate.	2800	V
V _{GES}	Peak gate – emitter voltage	±20	V

	RATINGS	MAXIMUM LIMITS	UNITS
I _{C(DC)}	DC collector current, IGBT	900	А
I _{CRM}	Repetitive peak collector current, t _p =1ms, IGBT	1800	А
I _{F(DC)}	Continuous DC forward current, Diode	900	А
I _{FRM}	Repetitive peak forward current, t _p =1ms, Diode	1800	А
I _{FSM}	Peak non-repetitive surge $t_p=10ms$, $V_{RM}=60\%V_{RRM}$, Diode (Note 4)	14.2	А
I _{FSM2}	Peak non-repetitive surge t _p =10ms, V _{RM} ≤10V, Diode (Note 4)	15.6	А
P _{MAX}	Maximum power dissipation, IGBT (Note 2)	7.1	kW
(di/dt) _{cr}	Critical diode di/dt (note 3)	2000	A/µs
Tj	Operating temperature range.	-40 to +125	°C
T _{stg}	Storage temperature range.	-40 to +125	°C

Notes: -

- 1) Unless otherwise indicated $T_j = 125^{\circ}C$.
- 2) $T_{sink} = 25^{\circ}C$, double side cooled.

3) Maximum commutation loop inductance 200nH.

4) Half-sinewave, $125^{\circ}CT_{j}$ initial.

Characteristics

IGBT Characteristics

	PARAMETER	MIN	TYP	MAX	TEST CONDITIONS	UNITS
	Collector – emitter saturation voltage	-	2.8	3.2	$I_C = 900A, V_{GE} = 15V, T_j = 25^{\circ}C$	V
V _{CE(sat)}		-	3.6	4.0	$I_{C} = 900A, V_{GE} = 15V$	V
V _{T0}	Threshold voltage	-	-	1.4	Current range: 200 0000	V
r⊤	Slope resistance	-	-	2.9	Current range: 300 – 900A	mΩ
V _{GE(TH)}	Gate threshold voltage	-	5.2	-	$V_{CE} = V_{GE}, I_C = 90 \text{mA}$	V
ICES	Collector – emitter cut-off current		15	35	$V_{CE} = V_{CES}, V_{GE} = 0V$	mA
I _{GES}	Gate leakage current	-	-	±10	$V_{GE} = \pm 20 V$	μA
Cies	Input capacitance	-	140	-	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$	nF
t _{d(on)}	Turn-on delay time	-	1.7	-		μs
t _r (V)	Rise time	-	3.5	-	I _C =900A, V _{CE} =2800V, di/dt=1500A/μs	μs
Q _{g(on)}	Turn-on gate charge	-	7	-	$V_{GE} = \pm 15V$, L _s =200nH	μC
Eon	Turn-on energy	-	6.3	-	$R_{g(ON)}=6\Omega, R_{g(OFF)}=21\Omega, C_{GE}=90nF$	J
t _{d(off)}	Turn-off delay time	-	4.2	-	Integral diode used as freewheel diode	μs
t _f (I)	Fall time	-	2.6	-	(Note 3 & 4)	μs
Q _{g(off)}	Turn-off gate charge	-	8	-		μC
E _{off}	Turn-off energy	-	4.3	-		J
I _{SC}	Short circuit current	-	3000	-	V_{GE} =+15V, V_{CC} =2800V, V_{CEmax} $\leq V_{CES}$, t_p \leq 10µs	А

Diode Characteristics

	PARAMETER	MIN	TYP	MAX	TEST CONDITIONS	UNITS
V _F	Forward voltage	-	3.7	4.0	I _F = 900A, T _j =25°C	V
		-	3.9	4.2	I _F = 900A	V
V _{To}	Threshold voltage	-	-	2.27	0	V
r _T	Slope resistance	-	-	2.15	Current range 300-900A	mΩ
I _{rm}	Peak reverse recovery current	-	800	-	I _F = 900A, V _{GE} = -15V, di/dt=1500A/µs	Α
Qrr	Recovered charge	-	1000	-		μC
t _{rr}	Reverse recovery time, 50% chord	-	1.8	-		μs
Er	Reverse recovery energy	-	1.25	-		J

Thermal Characteristics

	PARAMETER	MIN	TYP	MAX	TEST CONDITIONS	UNITS
R _{thJK}	Thermal resistance junction to sink, IGBT	-	-	14	Double side cooled	K/kW
		-	-	23	Collector side cooled	K/kW
		-	-	37	Emitter side cooled	K/kW
R _{thJK}	Thermal resistance junction to sink, Diode	-	-	26	Double side cooled	K/kW
		-	-	41	Cathode side cooled	K/kW
		-	-	78	Anode side cooled	K/kW
F	Mounting force	25	-	35	Note 2	kN
Wt	Weight	-	1.2	-		kg

Notes:-

1) Unless otherwise indicated $T_j=125^{\circ}C$.

2) Consult application note 2008AN01 for detailed mounting requirements

3) C_{GE} is additional gate – emitter capacitance added to output of gate drive

4) Figures 6 to 9 are obtained using integral diode as freewheeling diode

<u>Curves</u>

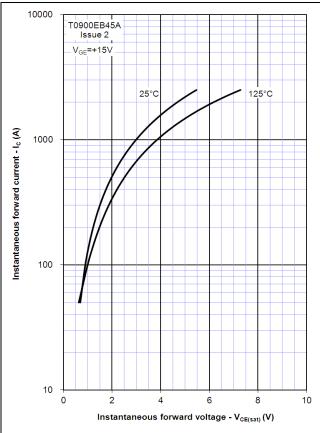
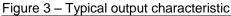



Figure 1 – Typical collector-emitter saturation voltage characteristics

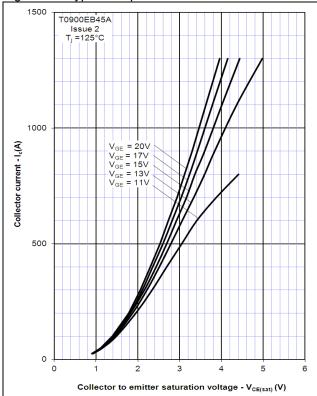


Figure 2 – Typical output characteristic

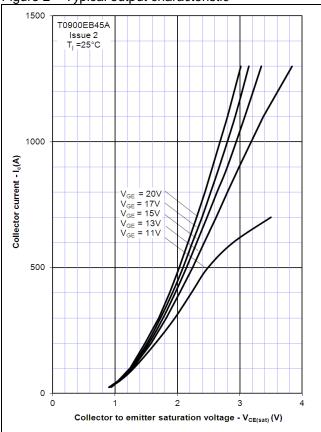
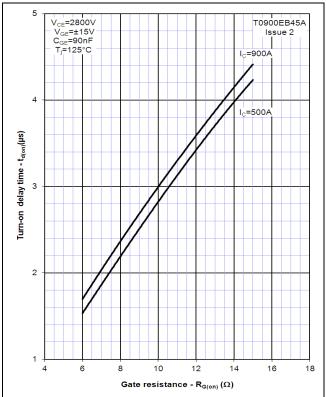



Figure 4 – Typical turn-on delay time vs gate resistance

resistance 10 T0900EB45A Issue 2 V_{CE}=2800V I_c=900A Ŭ_{GE}=±15∨ 9 C_{GE}=90nF T_j=125°C _I_C=500A 8 delay time - t_{d(off)}(µs) 7 Turn-off 6 5 4 3 10 50 20 60 30 40 Gate resistance - $R_{G(off)}(\Omega)$

Figure 5 - Typical turn-off delay time vs. gate

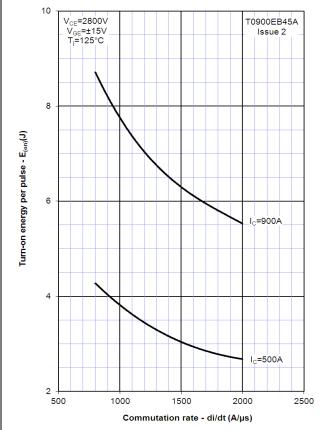


Figure 6 – Typical turn-on energy vs. collector current

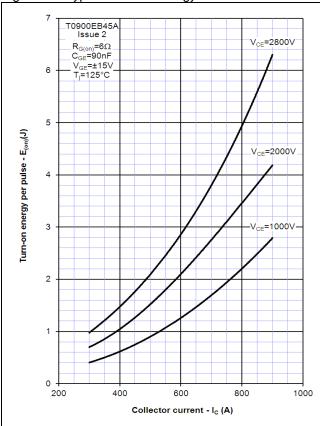
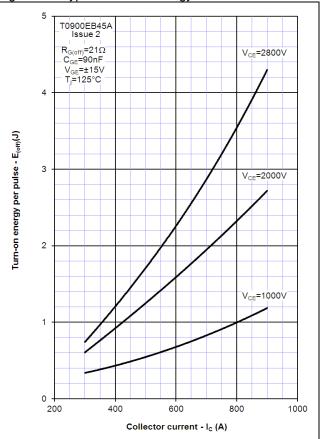
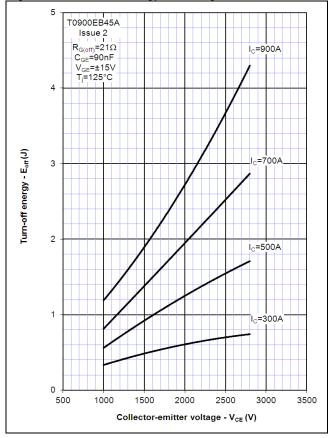




Figure 8 - Typical turn-off energy vs. collector current

Data Sheet T0900EB45A Issue 2

Figure 9 - Turn-off energy vs voltage

Figure 11 – Typical diode forward characteristics

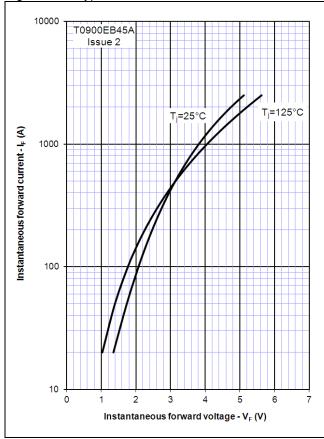


Figure 10 - Safe operating area

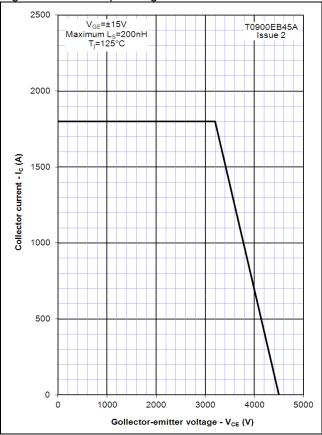
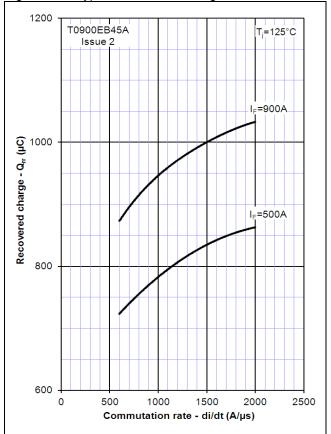



Figure 12 – Typical recovered charge

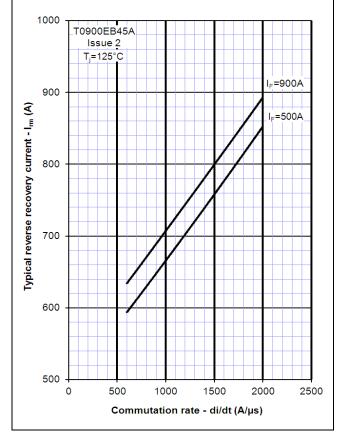


Figure 13 – Typical reverse recovery current

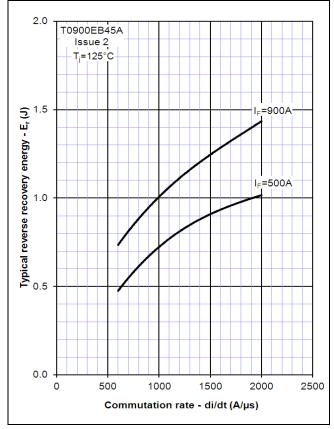


Figure 14 – Typical reverse recovery time

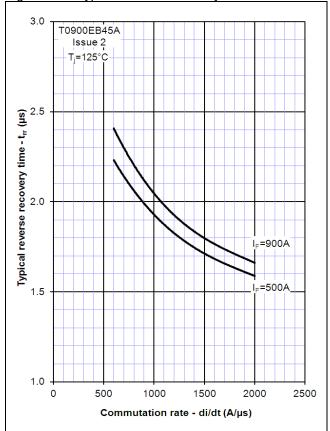
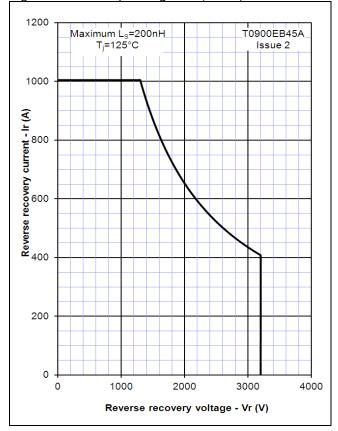
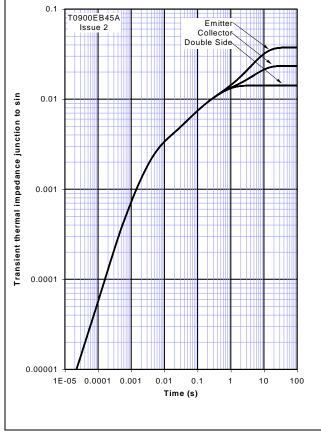
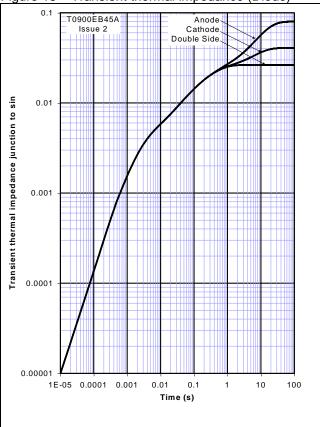




Figure 16 - Safe operating area (Diode)



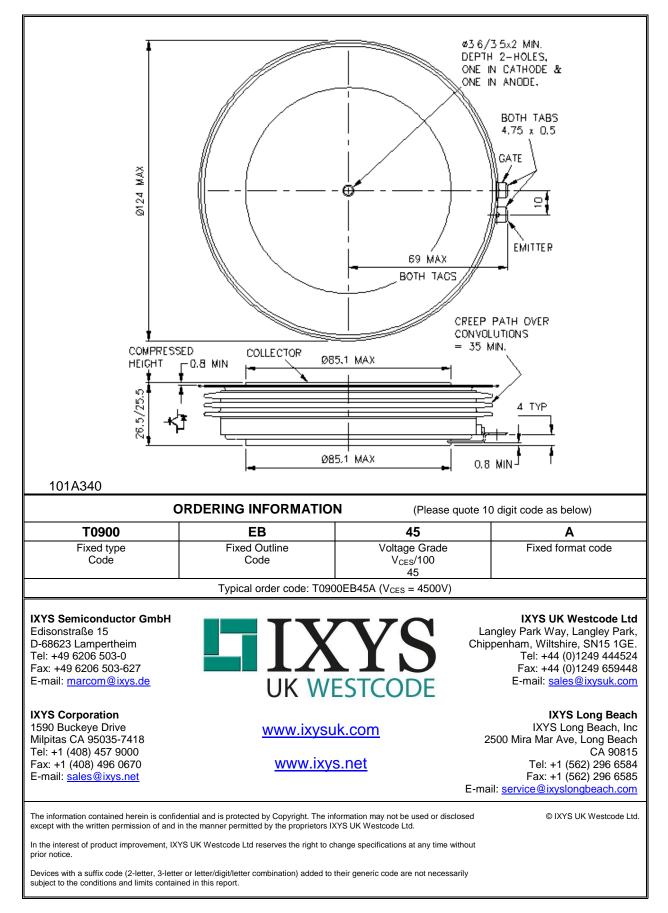

Figure 17 – Transient thermal impedance (IGBT)

Figure 18 – Transient thermal impedance (Diode)

Outline Drawing & Ordering Information

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.