

Date: - 12 May, 2022

Data Sheet Issue:- A1

Advance data

Insulated Gate Bi-Polar Transistor Type T0710TC33A

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
Vces	Collector – emitter voltage	3300	V
V _{DC link}	Permanent DC voltage for 100 FIT failure rate.	1800	V
V_{GES}	Peak gate – emitter voltage	±20	V

	RATINGS	MAXIMUM LIMITS	UNITS
I _{C(DC)}	DC collector current, IGBT	710	Α
ICRM	Repetitive peak collector current, tp=1ms, IGBT	1420	Α
I _{F(DC)}	Continuous DC forward current, Diode	710	Α
I _{FRM}	Repetitive peak forward current, tp=1ms, Diode	1420	Α
I _{FSM}	Peak non-repetitive surge t _P =10ms, V _{RM} =60%V _{RRM} , Diode (Note 4)	3736	Α
I _{FSM2}	Peak non-repetitive surge t _p =10ms, V _{RM} ≤10V, Diode (Note 4)	4110	Α
P _{MAX}	Maximum power dissipation, IGBT (Note 2)	4.59	kW
P_D	Maximum power dissipation, Diode (Note 2)	2.31	kW
(di/dt) _{cr}	Critical diode di/dt (note 3)	1500	A/µs
Tj	Operating temperature range.	-40 to +125	°C
T _{stg}	Storage temperature range.	-40 to +125	°C

Notes: -

- 1) Unless otherwise indicated $T_i = 125$ °C.
- 2) $T_{sink} = 25$ °C, double side cooled.
- 3) Maximum commutation loop inductance 600nH.
- 4) Half-sinewave, 125°C T_j initial.

Characteristics

IGBT Characteristics

	PARAMETER	MIN	TYP	MAX	TEST CONDITIONS	UNITS
\/	Collector emitter acturation valtage	-	2.55	2.85	Ic = 710A, V _{GE} = 15V, T _j = 25°C	V
V _{CE(sat)}	Collector – emitter saturation voltage	-	3.30	3.60	Ic = 710A, V _{GE} = 15V	V
V _{T0}	Threshold voltage	-	-	1.71	Current range: 237 – 710A	٧
r _T	Slope resistance	-	-	2.67	Current range: 237 – 710A	mΩ
$V_{\text{GE(TH)}}$	Gate threshold voltage	-	5.2	-	V _{CE} = V _{GE} , I _C = 60mA	V
I _{CES}	Collector – emitter cut-off current		4	18	$V_{CE} = V_{CES}, V_{GE} = 0V$	mA
I _{GES}	Gate leakage current	-	-	±10	$V_{GE} = \pm 20V$	μA
Cies	Input capacitance	-	97	-	V _{CE} = 25V, V _{GE} = 0V, f = 1MHz	nF
t _{d(on)}	Turn-on delay time	-	1.4	-		μs
$t_r(V)$	Rise time	-	1.6	-	Ic=710A, Vcε=1800V, di/dt=1400A/μs	μs
Q _{g(on)}	Turn-on gate charge	-	13.5	-	$V_{GE} = \pm 15V, L_{s} = 600nH$	μC
Eon	Turn-on energy	-	1.5	-	$R_{G(ON)}$ = 2.7 Ω , $R_{G(OFF)}$ =21 Ω , C_{GE} =300nF	J
t _{d(off)}	Turn-off delay time	-	5.1	-	Integral diode used as freewheel diode	μs
$t_f(I)$	Fall time	-	1.3	-	(Note 3, 4 & 5)	μs
Q _{g(off)}	Turn-off gate charge	-	9	-		μC
E _{off}	Turn-off energy	-	2	-		J
Isc	Short circuit current	-	2800	-	V_{GE} =+15V, V_{CC} =1800V, V_{CEmax} \leq V_{CES} , t_p \leq 10 μ s, L_s < 150nH	А

Diode Characteristics

	PARAMETER	MIN	TYP	MAX	TEST CONDITIONS	UNITS
VF	Compared voltage	-	2.95	3.25	I _F = 710A, T _j =25°C	V
VF	Forward voltage	-	2.90	3.20	I _F = 710A	V
V _{To}	Threshold voltage	-	-	1.61	Current repres 227, 740A	V
r⊤	Slope resistance	-	-	2.24	Current range 237 - 710A	mΩ
Irm	Peak reverse recovery current	-	420	-		Α
Q_{rr}	Recovered charge	-	570	-	$I_F = 710A$, $V_r = 1800V$, $V_{GE} = -15V$,	μC
t _{rr}	Reverse recovery time, 50% chord	-	1.65	-	di/dt=1400A/µs	μs
Er	Reverse recovery energy	-	0.6	-		J

Thermal Characteristics

	PARAMETER	MIN	TYP	MAX	TEST CONDITIONS	UNITS
		-	-	21.8	Double side cooled	K/kW
R_{thJK}	Thermal resistance junction to sink, IGBT	-	-	36.8	Collector side cooled	K/kW
		-	-	53.5	Emitter side cooled	K/kW
		-	-	43.2	Double side cooled	K/kW
R_{thJK}	Thermal resistance junction to sink, Diode	-	-	68	Cathode side cooled	K/kW
		-	-	118	Anode side cooled	K/kW
F	Mounting force	15	20	25	Note 2	kN
Wt	Weight	-	1.2	-		kg

Notes:-

- 1) 2) 3) 4)
- Unless otherwise indicated T_j =125°C. Consult application note 2008AN01 for detailed mounting requirements C_{GE} is additional gate emitter capacitance added to output of gate drive E_{on} integration time 15 μ s from 10% rising I_{G} . E_{off} integration time 15 μ s from 90% falling V_{GE} .

Curves

Figure 1 – Typical collector-emitter saturation voltage characteristics

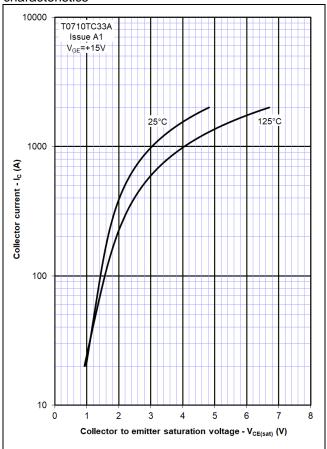


Figure 2 – Typical output characteristic

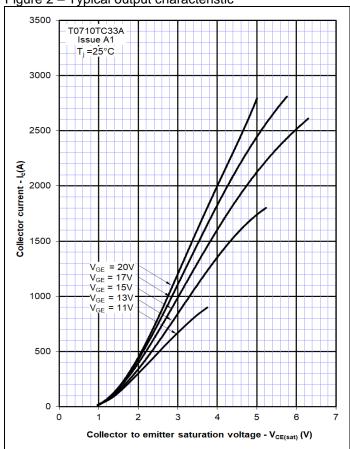


Figure 3 - Typical output characteristic

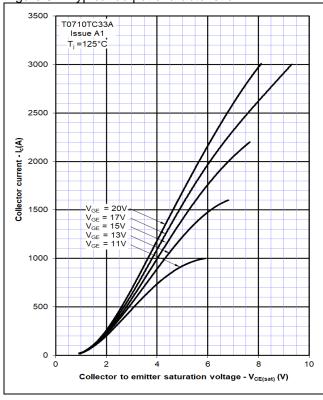


Figure 4 – Typical turn-on delay time vs gate resistance

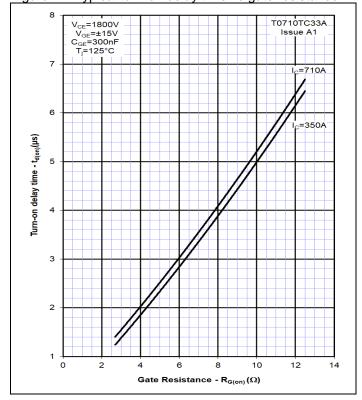


Figure 5 - Typical turn-off delay time vs. gate resistance

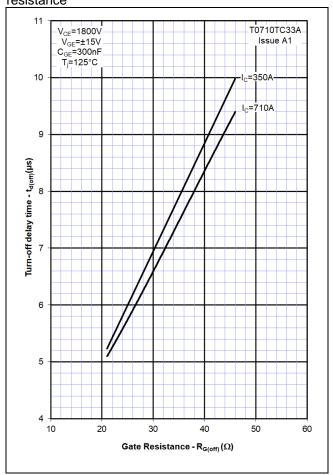


Figure 6 – Typical turn-on energy vs. collector current

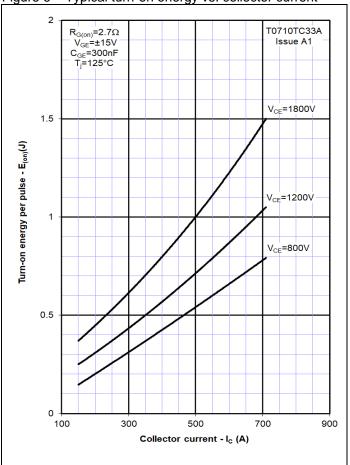


Figure 7 – Typical turn-on energy vs. di/dt

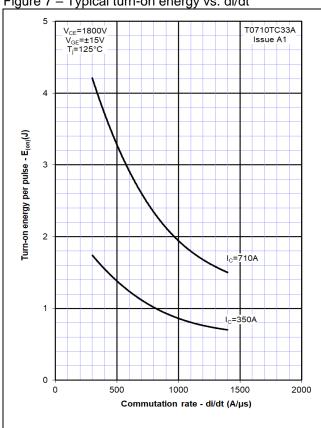


Figure 8 - Typical turn-off energy vs. collector current

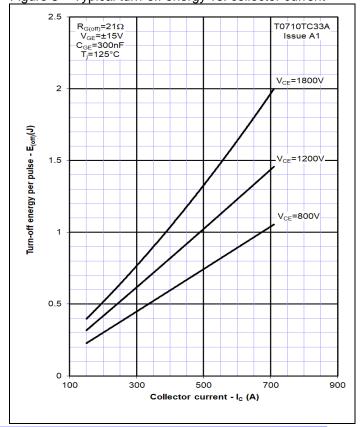


Figure 9 - Turn-off energy vs voltage

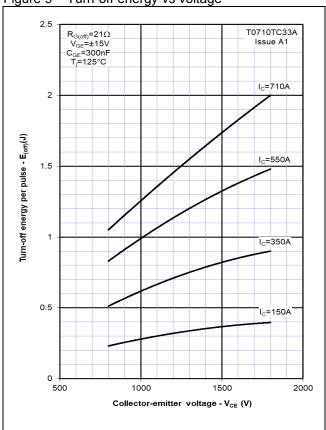


Figure 10 – Safe operating area (IGBT)

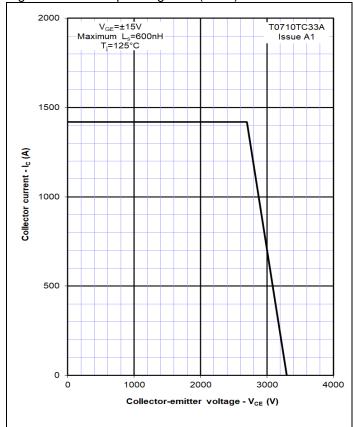


Figure 11 - Typical diode forward characteristics

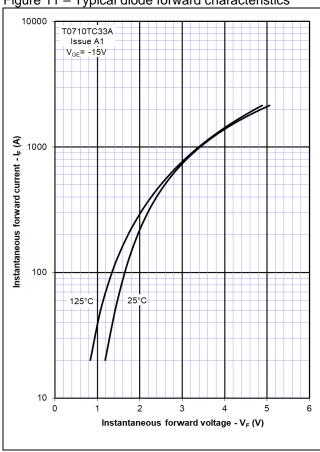
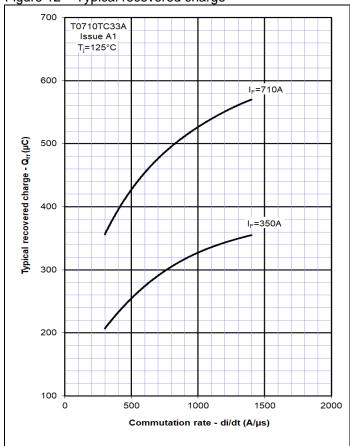
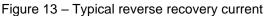




Figure 12 – Typical recovered charge

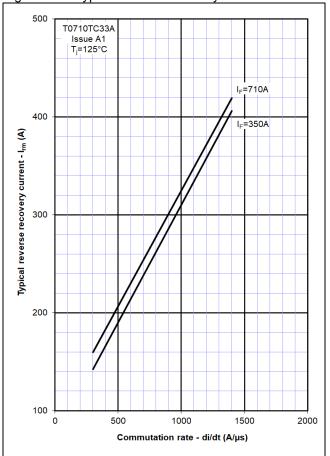


Figure 14 – Typical reverse recovery time

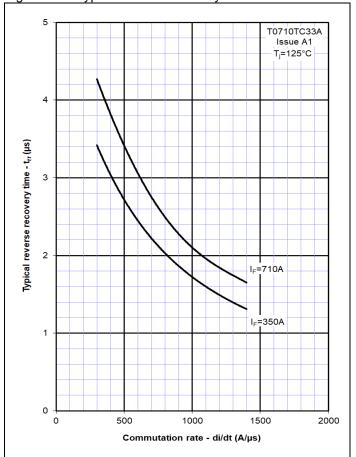


Figure 15 – Typical reverse recovery energy

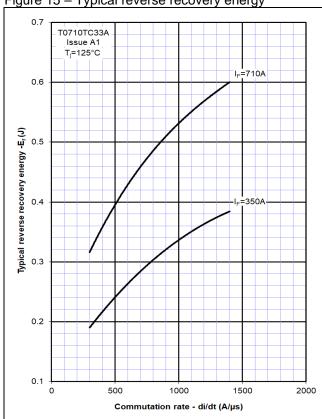
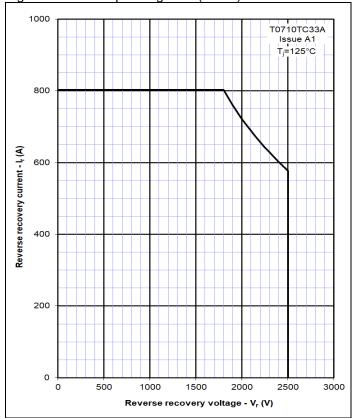



Figure 16 – Safe operating area (Diode)

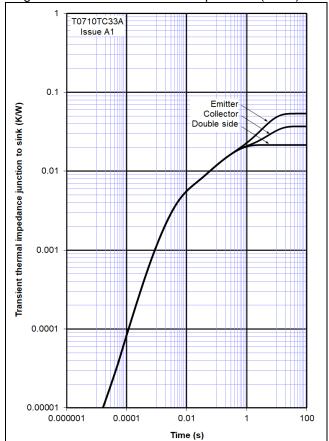
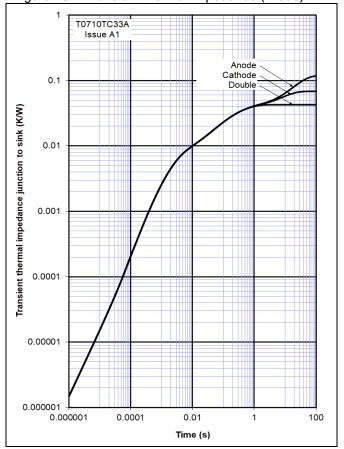
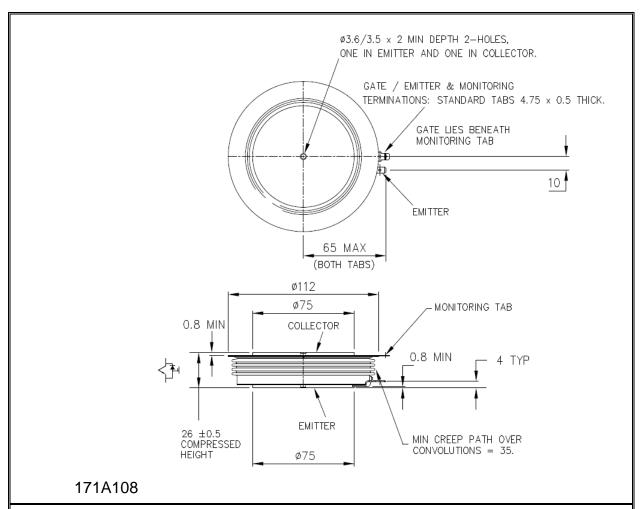




Figure 18 - Transient thermal impedance (Diode)

Outline Drawing & Ordering Information

ORDERING INFORMATION

(Please quote 10 digit code as below)

		(,		
T0710	TC	33	Α		
Fixed type Code	Fixed Outline Code	Voltage Grade V _{CES} /100 33	Fixed format code		

Typical order code: T0710TC33A (V_{CES} = 3300V)

IXYS UK Westcode Ltd

Langley Park Way, Langley Park,

Chippenham, Wiltshire, SN15 1GE

Tel: +44 (0)1249 444524 Fax: +44 (0)1249 659448 E-mail:

https://www.littelfuse.com/contactus.aspx

www.littelfuse.com

IXYS Long Beach

IXYS Long Beach, Inc 2500 Mira Mar Ave, Long Beach CA 90815

Tel: +1 (562) 296 6584 Fax: +1 (562) 296 6585 F-mail:

powerstacksus@littelfuse.com

www.littelfuse.com/products/pow er-semiconductors/high-power

The information contained herein is confidential and is protected by Copyright. The information may not be used or disclosed except with the written permission of and in the manner permitted by the proprietors IXYS UK Westcode Ltd.

© IXYS UK Westcode Ltd.

In the interest of product improvement, IXYS UK Westcode Ltd reserves the right to change specifications at any time without prior notice.

Devices with a suffix code (2-letter, 3-letter or letter/digit/letter combination) added to their generic code are not necessarily subject to the conditions and limits contained in this report.

<u>Disclaimer Notice</u> Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics