1~ Rectifier
$\mathrm{V}_{\text {RRM }}=1200 \mathrm{~V}$
$\mathrm{I}_{\text {DAV }}=$
$\mathrm{I}_{\text {FSM }}=$

1~ Rectifier Bridge

Part number

VBO54-12NO7

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For one phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: ECO-PAC1

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Height: 9 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

VBO54-12NO7

VBO54-12NO7

Package	ECO-PAC1		Ratings			
Symbol	Definition Conditions		min.	typ.	max.	Unit
$\mathrm{I}_{\text {RMS }}$	RMS current per terminal				100	A
Tvs	virtual junction temperature		-40		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	operation temperature		-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-40		125	${ }^{\circ} \mathrm{C}$
Weight				19		g
M_{D}	mounting torque		1.4		2	Nm
$\mathbf{d}_{\text {spp/App }}$ $\mathbf{d}_{\mathrm{spb} / \mathrm{Apb}}$	creepage distance on surface / striking distance through air	terminal to terminal terminal to backside	$\begin{array}{r} 6.0 \\ 10.0 \end{array}$			mm mm
$\mathrm{V}_{\text {ISoL }}$	isolation voltage $\quad \begin{aligned} & t=1 \text { second } \\ & t=1 \text { minute }\end{aligned}$	$50 / 60 \mathrm{~Hz}, \mathrm{RMS}$; $\mathrm{lisol} \leq 1 \mathrm{~mA}$	$\begin{aligned} & 3000 \\ & 2500 \end{aligned}$			V V

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	VBO54-12NO7	VBO54-12NO7	Box	25	479543
Alternative	VBO54-12NO7	VBO54-12NO7	Tube	13	521501

Equivalent Circuits for Simulation *on die level $\quad \mathrm{T}_{\mathrm{vJ}}=150^{\circ} \mathrm{C}$

R_{0}

Rectifier

$\mathbf{V}_{0 \text { max }}$ threshold voltage 0.82
V
$\mathbf{R}_{0 \text { max }}$ slope resistance * $11 \mathrm{~m} \Omega$

Outlines ECO-PAC1

Rectifier

Fig. 1 Forward current versus voltage drop per diode

Fig. 2 Surge overload current

Fig. 4 Power dissipation vs. direct output current \& ambient temperature

Fig. $3 I^{2}$ t versus time per diode

Fig. 5 Max. forward current vs. case temperature

Fig. 6 Transient thermal impedance junction to case

Constants for $Z_{\text {thJc }}$ calculation:

i	$\mathrm{R}_{\mathrm{th}}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.05070	0.004
2	0.163	0.0025
3	0.2805	0.0035
4	0.363	0.02
5	0.2228	0.15

