HiPerFAST ${ }^{\text {TM }}$ IGBT IXGH15N120B2D1

Optimized for $10-20 \mathrm{KHz}$ hard switching and up to 100 KHz resonant switching

TO-268
(IXGT)

$G=$ Gate	$C=$ Collector
$E=$ Emitter	TAB $=$ Collector

Features

- International standard packages: JEDEC TO-247AD \& TO-268
- IGBT and anti-parallel FRED in one package
- MOS Gate turn-on - drive simplicity
- Fast Recovery Expitaxial Diode (FRED)
- soft recovery with low $I_{R M}$

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- Saves space (two devices in one package)
- Easy to mount with 1 screw (isolated mounting screw hole)
- Reduces assembly time and cost

IXGH 15N120B2D1 IXGT 15N120B2D1

Reverse Diode (FRED)
Characteristic Values
($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

| Symbol | Test Conditions | min. | typ. | max. |
| :--- | :--- | ---: | ---: | ---: | ---: |
| I_{F} | $T_{C}=100^{\circ} \mathrm{C}$ | | 15 | A |
| $\mathrm{~V}_{\mathrm{F}}$ | $\mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$ | | 2.8 | V |
| | $\mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$ | 2.1 | | V |
| I_{RM} | $\mathrm{I}_{\mathrm{F}}=25 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S}, \mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$ | 6 | A | |
| t_{rr} | $\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$ | 165 | ns | |
| $\mathrm{R}_{\mathrm{thJC}}$ | | | | $1.6 \mathrm{~K} / \mathrm{W}$ |

TO-268 Outline

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.9	5.1	193	. 201
A_{1}	2.7	2.9	. 106	. 114
A_{2}	. 02	. 25	. 001	. 010
b	1.15	1.45	. 045	. 057
b_{2}	1.9	2.1	. 75	. 83
C	. 4	. 65	. 016	. 026
D	13.80	14.00	. 543	. 551
E	15.85	16.05	. 624	. 632
E_{1}	13.3	13.6	. 524	. 535
e	5.4	BSC		BSC
H	18.70	19.10	. 736	. 752
L	2.40	2.70	. 094	. 106
L1	1.20	1.40	. 047	. 055
L2	1.00	1.15	. 039	. 045
L3		BSC		BSC
L4	3.80	4.10	. 150	. 161

IXYS reserves the right to change limits, test conditions, and dimensions.

