

HiPerFAST™ IGBT IXGH15N120B2D1

Optimized for 10-20 KHz hard switching and up to 100 KHz resonant switching

V _{CES}	=1	200	V
I _{C25}	=	30	Α
V _{CE(sat)}	=	3.3	V
t _{fi(typ)}	=	137	ns

Symbol	Test Conditions	Maximu	ım Ratings	5
V _{CES}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$		1200	V
V _{CGR}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C; R_{GE} =$	1 ΜΩ	1200	V
V _{GES}	Continuous		±20	V
V_{GEM}	Transient		±30	V
I _{C25}	T _C = 25°C		30	А
I _{C90}	$T_{C} = 90^{\circ}C$		15	Α
I _{CM}	$T_{\rm C} = 25^{\circ} \rm C$, 1 ms		60	Α
SSOA	V _{GE} = 15 V, T _{VJ} = 125°C, R _G	= 10 Ω	I _{CM} = 40	A
(RBSOA)	Clamped inductive load	@	0.8 V _{CES}	
P _c	T _C = 25°C		192	W
T _J		-55	5 +150	°C
T_{JM}			150	°C
T _{stg}		-58	5 +150	°C
M _d	Mounting torque (TO-247)		1.13/10 N	lm/lb.in.
	ead temperature for soldering 062 in.) from case for 10 s		300	°C
	ab temperature MD devices for 10s		260	°C
Weight		TO-247AD / TO-268	6/4	g

soldering S	SMD devices for 10s				
Weight		TO-247AD / TO-26	68 (6 / 4	g
Symbol $(T_J = 25^{\circ}C)$	Test Conditions , unless otherwise specified)	(Min.	Characto	eristic V Max.	alues
BV _{CES}	$I_{c} = 250 \mu\text{A}, V_{GE} = 0 \text{V}$	1200			V
$V_{\text{GE(th)}}$	$I_{\text{C}}^{}=250\mu\text{A},V_{\text{CE}}^{}=V_{\text{GE}}^{}$	2.5		5.0	V
I _{CES}	$V_{CE} = V_{CES}$	T _J = 25°C		100	μΑ
	$V_{GE} = 0 V$	T _J = 125°C		3.5	mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±100	nΑ
V _{CE(sat)}	$I_{\rm C} = I_{\rm CE90}, V_{\rm GE} = 15$			3.3	V
. ,		$T_J = 125^{\circ}C$	2.7		V

G = Gate	C = Collector
E = Emitter	TAB = Collector

Features

- International standard packages: JEDEC TO-247AD & TO-268
- IGBT and anti-parallel FRED in one package
- MOS Gate turn-on
 - drive simplicity
- Fast Recovery Expitaxial Diode (FRED)
 - soft recovery with low IRM

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- Saves space (two devices in one package)
- Easy to mount with 1 screw (isolated mounting screw hole)
- Reduces assembly time and cost

Symbol Test Conditions		Characteristic Values		
$(T_{J} = 2)$	5°C, unless otherwise specified)	Min.	Тур.	Max.
g _{fs}	$I_{\rm C} = I_{\rm C90}; V_{\rm CE} = 10 \text{ V},$	12	15	S
	Pulse test, $t \le 300 \mu s$, duty cycle $\le 2 \%$			
C _{ies}			1700	pF
\mathbf{C}_{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		95	pF
$\mathbf{C}_{\mathrm{res}}$	J		38	pF
Q			86	nC
Q_{ge}	$I_{c} = I_{c90}, V_{GE} = 15 \text{ V}, V_{CE} = 0.5 V_{CES}$		13	nC
\mathbf{Q}_{gc}^{gc}			26	nC
t _{d(on)}	Inductive load, T _J = 25°C		25	ns
t _{ri}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \rm V$		15	ns
t _{d(off)}	$V_{CE} = 960 \text{ V}, R_G = R_{off} = 10 \Omega$		165	240 ns
t _{fi}	Remarks: Switching times may		137	255 ns
E _{off}	increase for V_{CE} (Clamp) > 0.8 V_{CES} , higher T_J or increased R_G		1.4	2.3 mJ
t _{d(on)}	Industive lead T = 125°C		25	ns
t _{ri}	Inductive load, T _J = 125°C		18	ns
E _{on}	$I_{c} = I_{c90}, V_{GE} = 15 \text{ V}$		0.60	mJ
t _{d(off)}	$V_{CE} = 960 \text{ V}, R_{G} = R_{off} = 10 \Omega$ Remarks: Switching times may		260	ns
t _{fi}	increase for V_{CE} (Clamp) > 0.8 V_{CES} ,		305	ns
E _{off}	higher T _J or increased R _G		2.8	mJ
R _{thJC}	TO-247		0.25	0.65 K/W K/W

Reverse Diode (FRED)

Characteristic Values (T, = 25°C, unless otherwise specified)

Symbol	Test Conditions	min.	typ.	max.	•
l _F	T _C = 100°C			15	Α
$V_{_{\rm F}}$	$I_F = 15 \text{ A}, V_{GE} = 0 \text{ V}$ $I_F = 15 \text{ A}, V_{GE} = 0 \text{ V}, T_J = 125^{\circ}\text{C}$		2.1	2.8	V V
I _{RM}	$I_F = 25 \text{ A}; -di_F/dt = 100 \text{ A/}\mu\text{s}, \ \ V_R = 100 \text{ V}$ $V_{GE} = 0 \text{ V}; \ T_J = 100^{\circ}\text{C}$		6 165		A ns
R _{thJC}				1.6	K/W

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
Α	4.9	5.1	.193	.201
A ₁	2.7	2.9	.106	.114
A_2	.02	.25	.001	.010
b	1.15	1.45	.045	.057
b_2	1.9	2.1	.75	.83
С	.4	.65	.016	.026
D	13.80	14.00	.543	.551
Е	15.85	16.05	.624	.632
E ₁	13.3	13.6	.524	.535
е	5.45 BSC		.21	5 BSC
Н	18.70	19.10	.736	.752
L	2.40	2.70	.094	.106
L1	1.20	1.40	.047	.055
L2	1.00	1.15	.039	.045
L3	0.2	5 BSC	.01	0 BSC
L4	3.80	4.10	.150	.161

