Description

The SP1250 unidirectional TVS is fabricated in a proprietary silicon avalanche technology. These diodes provide a high ESD (electrostatic discharge) protection level for electronic equipment. The SP1250 TVS can safely absorb repetitive ESD strikes of ±30 kV (contact and air discharge as defined in IEC 61000-4-2) without any performance degradation. Additionally, each TVS can safely dissipate a 50A 8/20μs surge event as defined in IEC 61000-4-5 2nd edition.

Features

- ESD, IEC 61000-4-2, ±30kV contact, ±30kV air
- EFT, IEC 61000-4-4, 40A (5/50ns)
- Lightning, 50A (8/20μs as defined in IEC 61000-4-5 2nd edition)
- Low leakage current of 0.02μA (TYP) at 5V
- Halogen free, lead free and RoHS compliant
- Moisture Sensitivity Level (MSL-1)
- AEC-Q101 Qualified

Applications

- VBUS Protection
- Portable Battery
- Switches / Buttons
- Test Equipment / Instrumentation
- Medical Equipment
- Notebooks / Desktops / Servers
- Computer Peripherals
- Point-of-Sale Terminals

Pinout

![Pinout Diagram](image)

1 2

Note: This package image is for example and reference only. For detail package drawing, please refer to the package section in this datasheet.

Functional Block Diagram

![Functional Block Diagram](image)

1 2

Life Support Note:

Not Intended for Use in Life Support or Life Saving Applications

The products shown herein are not designed for use in life sustaining or life saving applications unless otherwise expressly indicated.

©2020 Littelfuse, Inc.
Specifications are subject to change without notice.
Revision: 08/05/20
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the component. This is a stress only rating and operation of the component at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{pp}</td>
<td>Peak Current (t_{p}=8/20μs)</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>T_{OP}</td>
<td>Operating Temperature</td>
<td>-40 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STOR}</td>
<td>Storage Temperature</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electrical Characteristics (T_{OP}=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Standoff Voltage</td>
<td>V_{RWM}</td>
<td>I_{R}=1μA</td>
<td>5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Breakdown Voltage</td>
<td>V_{BR}</td>
<td></td>
<td>5.1</td>
<td>5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Reverse Leakage Current</td>
<td>I_{LEAK}</td>
<td>V_{R}=5V</td>
<td>0.02</td>
<td>0.1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Clamp Voltage¹</td>
<td>V_{C}</td>
<td>I_{pp}=50A, t_{p}=8/20μs</td>
<td>8.7</td>
<td>10</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Dynamic Resistance²</td>
<td>R_{DYN}</td>
<td>TLP, t_{p}=100ns</td>
<td>0.05</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>ESD Withstand Voltage¹</td>
<td>V_{ESD}</td>
<td>IEC 61000-4-2 (Contact Discharge)</td>
<td>±30</td>
<td></td>
<td></td>
<td>kV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IEC 61000-4-2 (Air Discharge)</td>
<td>±30</td>
<td></td>
<td></td>
<td>kV</td>
</tr>
<tr>
<td>Diode Capacitance¹</td>
<td>C_{IO,GND}</td>
<td>Reverse Bias=0V, f=1MHz</td>
<td>120</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

Note:

1. Parameter is guaranteed by design and/or component characterization.
2. Transmission Line Pulse (TLP) with 100ns width, 0.2ns rise time, and average window t1=70ns to t2=90ns

Capacitance vs. Reverse Bias

<table>
<thead>
<tr>
<th>Bias Voltage (V)</th>
<th>Capacitance (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>120.0</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>80.0</td>
</tr>
<tr>
<td>3</td>
<td>60.0</td>
</tr>
<tr>
<td>4</td>
<td>40.0</td>
</tr>
<tr>
<td>5</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Clamping voltage vs. I_{pp} for 8/20μs waveshape

<table>
<thead>
<tr>
<th>Peak Pulse Current * IPP (A)</th>
<th>Clamp Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>10.0</td>
</tr>
<tr>
<td>20</td>
<td>10.0</td>
</tr>
<tr>
<td>25</td>
<td>10.0</td>
</tr>
<tr>
<td>30</td>
<td>10.0</td>
</tr>
<tr>
<td>35</td>
<td>10.0</td>
</tr>
<tr>
<td>40</td>
<td>10.0</td>
</tr>
<tr>
<td>45</td>
<td>10.0</td>
</tr>
<tr>
<td>50</td>
<td>10.0</td>
</tr>
</tbody>
</table>
Negative Transmission Line Pulsing (TLP) Plot

Positive Transmission Line Pulsing (TLP) Plot

IEC 61000-4-2 +8 kV Contact ESD Clamping Voltage

IEC 61000-4-2 -8 kV Contact ESD Clamping Voltage

8/20μs Pulse Waveform
Soldering Parameters

<table>
<thead>
<tr>
<th>Reflow Condition</th>
<th>Pb – Free assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre Heat</td>
<td></td>
</tr>
<tr>
<td>- Temperature Min (Tₜₕₚₘₜₚ)</td>
<td>150°C</td>
</tr>
<tr>
<td>- Temperature Max (Tₜₕₚₙₖₚ)</td>
<td>200°C</td>
</tr>
<tr>
<td>- Time (min to max) (tₛ)</td>
<td>60 – 180 secs</td>
</tr>
<tr>
<td>Average ramp up rate (Liquidus) Temp (Tₔ)</td>
<td>3°C/second max</td>
</tr>
<tr>
<td>Tₜₕₚₙₖₚ to Tₔ - Ramp-up Rate</td>
<td>3°C/second max</td>
</tr>
<tr>
<td>Reflow</td>
<td></td>
</tr>
<tr>
<td>- Temperature (Tₔ) (Liquidus)</td>
<td>217°C</td>
</tr>
<tr>
<td>- Temperature (tₔ)</td>
<td>60 – 150 seconds</td>
</tr>
<tr>
<td>Peak Temperature (Tₚ)</td>
<td>260°C</td>
</tr>
<tr>
<td>Time within 5°C of actual peak</td>
<td></td>
</tr>
<tr>
<td>Temperature (tₛ)</td>
<td>20 – 40 seconds</td>
</tr>
<tr>
<td>Ramp-down Rate</td>
<td>6°C/second max</td>
</tr>
<tr>
<td>Time 25°C to peak Temperature (Tₔ)</td>
<td>8 minutes Max.</td>
</tr>
<tr>
<td>Do not exceed</td>
<td>260°C</td>
</tr>
</tbody>
</table>

Product Characteristics

<table>
<thead>
<tr>
<th>Lead Plating</th>
<th>Matte Tin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead material</td>
<td>Copper Alloy</td>
</tr>
<tr>
<td>Substrate Material</td>
<td>Silicon</td>
</tr>
<tr>
<td>Body Material</td>
<td>Molded Compound</td>
</tr>
<tr>
<td>Flammability</td>
<td>UL Recognized compound meeting flammability rating V-0</td>
</tr>
</tbody>
</table>

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Min. Order Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1250-01ETG</td>
<td>SOD882</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Part Marking System

```
2 1
```

Date code
Part name

©2020 Littelfuse, Inc.
Specifications are subject to change without notice.
Revision: 08/05/20
Package Dimensions — SOD882

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>A</td>
<td>0.40</td>
<td>0.50</td>
</tr>
<tr>
<td>A1</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>L1</td>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td>L2</td>
<td>0.45</td>
<td>0.50</td>
</tr>
<tr>
<td>D</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>E</td>
<td>0.55</td>
<td>0.60</td>
</tr>
<tr>
<td>e</td>
<td>0.65 BSC</td>
<td>0.026 BSC</td>
</tr>
</tbody>
</table>

Embossed Carrier Tape & Reel Specification — SOD882

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>0.70 +/- 0.045</td>
</tr>
<tr>
<td>B0</td>
<td>1.10 +/- 0.045</td>
</tr>
<tr>
<td>K0</td>
<td>0.65 +/- 0.045</td>
</tr>
<tr>
<td>F</td>
<td>3.50 +/- 0.05</td>
</tr>
<tr>
<td>P1</td>
<td>2.00 +/- 0.10</td>
</tr>
<tr>
<td>W</td>
<td>8.00 +/- 0.30</td>
</tr>
</tbody>
</table>

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.