
MPU-32 AND FPU-32 MODBUS-TCP NETWORK
SEPTEMBER 5, 2006

PRELIMINARY

Copyright 2006 Startco Engineering Ltd.

All rights reserved.

Publication: MPU-32 MB-TCP-M
Document:
Printed in Canada.

Startco Engineering Ltd. Page i
MPU-32 and FPU-32 Modbus TCP Preliminary

MPU-32 MB-TCP-M, September 5, 2006

TABLE OF CONTENTS

PAGE

1. General ... 1

2. Modbus Protocol.. 1
2.1 Protocol Setup ... 1
2.2 Error Checking .. 1
2.3 Function Codes Supported..................................... 1

2.3.1 Modbus-TCP Header 1
2.3.2 Read Input/Holding Registers (Code 4/3).... 1
2.3.3 Write Single Register (Code 6).................... 2
2.3.4 Write Multiple Registers (Code 16)............. 2
2.3.5 Command Instruction (Code 5) 2
2.3.6 Command Instructions Using
 Register Writes .. 2
2.3.7 Read Device Identification (Code 43) 2

2.4 Error Responses... 3
2.5 Register Database .. 4
2.6 Network Status and Indication............................... 4

3. Data Records .. 4

4. Network Timeout ... 4

5. User Defined Registers .. 4

6. Specifications.. 4

LIST OF TABLES

PAGE

2.1 Modbus-TCP Header... 1
2.2 Read Registers (Code 4/3) 1
2.3 Write Single Register (Code 6).............................. 2
2.4 Write Multiple Registers (Code 16) 2
2.5 Command Format (Code 5) 2
2.6 Supported Commands.. 2
2.7 Read Device Identification (Code 43) 3
2.8 Device Identification Objects 3
2.9 Read Device Identification Response 3

DISCLAIMER

Specifications are subject to change without notice.
Startco Engineering Ltd. is not liable for contingent or
consequential damages, or for expenses sustained as a
result of incorrect application, incorrect adjustment, or a
malfunction.

1 Startco Engineering Ltd. Page 1
MPU-32 and FPU-32 Modbus TCP Preliminary

MPU-32 MB-TCP-M, September 5, 2006

1. GENERAL

The Ethernet network communications interface
supports the Modbus-RTU protocol over TCP/IP using an
encapsulating protocol called Modbus TCP. Each
MPU-32 or FPU-32 is a slave on the network and each
slave can support up to five (5) masters. Up to 254 slaves
can be connected on a network. Standard off-the-shelf
Ethernet hardware is all that is required for the
communications network.

2. MODBUS PROTOCOL

The MPU-32 and FPU-32 implement the Modbus®-
TCP protocol on port 502. Only the master can initiate a
transaction. Messages can be addressed to individual
slaves or they can be broadcast messages (to slave address
255). Broadcast messages are executed on the slaves but
unlike individually addressed messages, the slaves do not
generate a reply message.

Modicon Modbus® is a registered trademark of Schneider
Electric.

2.1 PROTOCOL SETUP
Configuration options are available in the Setup

Hardware Network Comms menu. Select Network ID,
Ethernet IP, and Ethernet Mask; then select Modbus TCP
from the Network Type menu. When network parameters
need to be changed, first set the Network Type to None,
make the parameter adjustments and then select
Modbus TCP as the network type. A Network ID of 0
disables communications. Valid slave addresses are
1 to 254.

2.2 ERROR CHECKING
Modbus TCP uses the TCP/IP checksum and error

correction techniques to ensure reliable communications.
If the checksum is correct but the internal data in the

message is not correct, the MPU-32 or FPU-32 will
respond with an exception code.

2.3 FUNCTION CODES SUPPORTED
The MPU-32 and FPU-32 Modbus Protocol supports

the following function codes:
• Read Holding Registers (Function Code 3)
• Read Input Registers (Function Code 4)
• Read Device Identification (Function Code 43)
• Write Single Register (Function Code 6)
• Write Multiple Registers (Function Code 16)
• Command Instruction (Function Code 5)

Function Codes 3 and 4 perform the same function in
the slave.

Registers in Modbus start at 40001 decimal and the
register address generated for this register is 0. See

MPU-32 or FPU-32 Appendix E for the Modbus Register
Table.

NOTE: For hexadecimal numbers, 0x precedes the value.

2.3.1 MODBUS-TCP HEADER
All Modbus-TCP messages are essentially Modbus-

RTU messages encapsulated with a Modbus-TCP header,
both of which are encapsulated in a TCP and an IP
header. The TCP/IP-header information is beyond the
scope of this document.

The first two bytes of the Modbus-TCP header are the
transaction identifier. The slave simply returns the
transaction identifier specified by the master. The next
two bytes are the protocol identifier and should be zero.
Following the protocol identifier are two more bytes that
specify the length of the encapsulated Modbus-RTU
packet. The high order length byte should always be zero
because Modbus-RTU packets cannot exceed 256 bytes.
The Modbus-RTU packet immediately follows the length.

TABLE 2.1 MODBUS-TCP HEADER
HEX BYTE DESCRIPTION

Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6

MSB Transaction Identifier
LSB Transaction Identifier
MSB Protocol Identifier
LSB Protocol Identifier
MSB Length
LSB Length

2.3.2 READ INPUT/HOLDING REGISTERS (CODE 4/3)
Starting after the Modbus-TCP header, the first byte of

the read message is the slave address. The second byte is
the function code. Bytes three and four indicate the
starting register. The next two bytes specify the number
of 16-bit registers to read. For those familiar with
Modbus RTU, note the lack of CRC is because error
handling is taken care of by TCP/IP. Table 2.2 shows the
packet starting after the Modbus-TCP header.

TABLE 2.2 READ REGISTERS (CODE 4/3)
HEX BYTE DESCRIPTION

Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6

Slave Address
Function Code
MSB Register Address
LSB Register Address
MSB Number of Registers
LSB Number of Registers

The two-byte values of starting register and number of
registers to read are transmitted with the high-order byte
followed by the low-order byte.

2 Startco Engineering Ltd. Page 2
MPU-32 and FPU-32 Modbus TCP Preliminary

MPU-32 MB-TCP-M, September 5, 2006

The following message will obtain the value of register
1 (Modbus 40002) from slave 1. Note that Modbus
registers are numbered from zero (40001 = zero,
40002 = one, etc.):

0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x06 | 0x01 | 0x03 | 0x00 | 0x01 | 0x00 | 0x01

The addressed slave responds with the Modbus-TCP
header, its address, Function Code 3, followed by the
information field. The information field contains an 8-bit
byte count and the 16-bit data from the slave. The byte
count specifies the number of bytes of data in the
information field. The data in the information field
consists of 16-bit data arranged so that the MSB is
followed by the LSB.

2.3.3 WRITE SINGLE REGISTER (CODE 6)
The function code format for writing a single register is

shown in Table 2.3.
The message consists of the Modbus-TCP header, then

the slave address followed by the Function Code 6 and
two 16-bit values. The first 16-bit value specifies the
register to be modified and the second value is the 16-bit
data.

Provided no errors occurred, the slave will resend the
original message to the master. The response message is
returned only after the command has been executed by the
slave.

The following message will set register 3 to 300 in
slave 5:

0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x06 | 0x05 | 0x06 | 0x00 | 0x03 | 0x01 | 0x2C

TABLE 2.3 WRITE SINGLE REGISTER (CODE 6)
HEX BYTE DESCRIPTION

Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6

Slave Address
Function Code
MSB Register Address
LSB Register Address
MSB of Data
LSB of Data

2.3.4 WRITE MULTIPLE REGISTERS (CODE 16)
The function-code format in Table 2.4 can be used for

writing single or multiple registers.

TABLE 2.4 WRITE MULTIPLE REGISTERS (CODE 16)
BYTE # DESCRIPTION
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8
Byte 9

.
Byte n

Byte n+1

Slave Address
Function Code
MSB Register Address
LSB Register Address
MSB of Quantity
LSB of Quantity
Byte Count
MSB of First Data Word
LSB of First Data Word

MSB of Last Data Word
LSB of Last Data Word

The slave will reply with the slave address, function
code, register address, and the quantity of registers
written.

2.3.5 COMMAND INSTRUCTION (CODE 5)
Modbus Function Code 5 (Force Single Coil) is used to

issue commands to the MPU-32 or FPU-32 slave. The
format for the message is listed in Table 2.5 and the
command code actions and corresponding coil number are
listed in Table 2.6.

TABLE 2.5 COMMAND FORMAT (CODE 5)
HEX BYTE DESCRIPTION

Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6

Slave Address
Function Code
MSB of Command Code
LSB of Command Code
Fixed at 0xff
Fixed at 0x00

TABLE 2.6 SUPPORTED COMMANDS
COMMAND

CODE
COIL

NUMBER
ACTION

0x0003
0x0004
0x0005
0x0006
0x0008
0x0009
0x000C

4
5
6
7
9
10
13

Reset Trips
Set Real-Time Clock
Clear Data-Logging Records
Clear Trip Counters
Clear Running Hours
Emergency I2t and Trip Reset
Re-enable Temperature Protection

Except for a broadcast address, the slave will return the
original packet to the master.

2.3.6 COMMAND INSTRUCTIONS USING REGISTER WRITES
For PLCs not supporting Function Code 5, commands

can be issued using Write Single Register (Code 6) and
Write Multiple Register (Code 16).

Commands are written to MPU-32 or FPU-32 register 6
(Modbus register 40007). Supported commands are listed
in the COMMAND CODE column in Table 2.6.

When using the Write Multiple Registers function
code, the write should be to the single Register 6. If
multiple registers are written starting at Register 6, the
first data element will be interpreted as the command
code but no other registers will be written. If the
command is successful, the slave will return a valid
response message.

2.3.7 READ DEVICE IDENTIFICATION (CODE 43)
Modbus Function Code 43 (Read Device Identification)

allows remote clients to read the identification and
additional information describing the slave. It is a new
function only supported by Modbus TCP and uses a
different scheme for requests than those based upon
Modbus RTU. In addition to the Modbus-TCP header,
there is a byte for the function code, Modbus

3 Startco Engineering Ltd. Page 3
MPU-32 and FPU-32 Modbus TCP Preliminary

MPU-32 MB-TCP-M, September 5, 2006

Encapsulated Interface (MEI) type, a Read Device
Identification Code, and finally the initial Object ID.

The MEI type is fixed at 0x0E. The Read Device
Identification Code can be:

1 – Stream Basic Device Objects
2 – Stream Regular Device Objects
4 – Access Individual Object.

Table 2.7 shows the format of the Read Device
Identification request.

TABLE 2.7 READ DEVICE IDENTIFICATION (CODE 43)
BYTE # DESCRIPTION
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5

Slave Address
Function Code
MEI Type
Read Device ID Code
(Initial) Object ID

There are three classes of objects: Basic, Regular, and
Extended. All Basic objects and several Regular objects
are supported at this time. Extended objects are not
supported. Basic objects are a subset of Regular objects
and can be streamed as either. The boundaries for Basic
objects are 0-2 and the boundaries for Regular objects are
0-4. The supported objects are listed below in Table 2.8.
Note that all objects are ASCII strings.

TABLE 2.8 DEVICE IDENTIFICATION OBJECTS
OBJECT ID DESCRIPTION CATEGORY

0x00
0x01
0x02

Vendor Name
Product Code
Major/Minor Revision

Basic

0x03
0x04

Vendor URL
Product Name Regular

The slave responds with the function code, MEI Type,
and Read Device Identification Code as submitted by the
master. It will also respond with the Conformity Level,
the More Follows flag, Next Object ID, Number of
Objects, and finally the Object(s).

The Conformity Level is fixed at 82, which indicates
that Regular and Basic Objects are supported and can be
streamed or individually accessed. More Follows is either
0 if there are no more objects to follow in subsequent
packets or 0xFF if there are more objects to follow. For
the MPU-32 and FPU-32, all objects can be streamed in a
single packet; therefore More Follows will be 0. The
Next Object ID similarly exists for streaming across
multiple packets, and would contain the next object to be
requested to continue the stream, but since this is not an
issue in the MPU-32 and FPU-32, it will always
contain 0. Finally the Number of Objects is the amount
contained in this packet. The Response Packet is shown in
Table 2.9.

TABLE 2.9 READ DEVICE IDENTIFICATION RESPONSE
BYTE # DESCRIPTION
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8
Byte 9
Byte 10

Byte 11+
.

Byte n
Byte n+1
Byte n+

Slave Address
Function Code
MEI Type
Read Device ID Code
Conformity Level
More Follows
Next Object ID
Number of Objects
First Object ID
First Object Length
First Object Data
 .
Last Object ID
Last Object Length
Last Object Data

Each Object contains an Object ID, Object Length, and
Object Value. Below are several examples of reading
Device Identification Objects.

The following message will obtain all basic objects
from slave 1, using Read Device Identification Code 1 to
stream Basic Objects, and starting at object 0:

0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x05 | 0x01 | 0x2B | 0x0E | 0x01 | 0x00

The response from the slave might look as follows:
0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x1D | 0x01 | 0x2B | 0x0E | 0x01 | 0x52 |

0x00 | 0x00 | 0x03 | 0x00 | 0x07 | “S” | “t” | “a” | “r” | “t” | “c” | “o” | 0x01 | 0x04 |
“P” | “3” | “0” | “1” | 0x02 | 0x04 | “1” | “.” | “4” | “0”

Note that the transmission automatically ends at the last
basic object since that was what was requested. If the
same request had been made, starting at Object 0, with
Read Device Identification Code 2 (read Regular objects),
all Basic and Regular Objects would be returned.

A single object, for example, the Product Name, can
also be requested as follows, using Read Device
Identification Code 4:

0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x05 | 0x01 | 0x2B | 0x0E | 0x04 | 0x04

The response from the slave might look as follows:
0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x10 | 0x01 | 0x2B | 0x0E | 0x04 | 0x52 | 0x00

| 0x00 | 0x01 | 0x04 | 0x06 | “M” | “P” | “U” | “-” | “3” | “2”

2.4 ERROR RESPONSES
The MPU-32 and FPU-32 support the following

exception responses:
• 01: Illegal Function − The function code (Byte 2 of

the Modbus-RTU packet or Byte 8 of the entire
Modbus-TCP message) is not supported

• 02: Illegal Data Address − All accesses to communication
registers must be within the specified address range.

• 03: Illegal Data Value − This error code is returned if
there is a data value outside the allowable value for the
slave.

4 Startco Engineering Ltd. Page 4
MPU-32 and FPU-32 Modbus TCP Preliminary

MPU-32 MB-TCP-M, September 5, 2006

The exception message consists of the Modbus-TCP
header, and the slave address followed by a
retransmission of the original function code. The function
code will have the most-significant bit set to indicate an
error. The 8-bit byte following the function code is the
exception response code.

In the case of the Read Device Identification function
(code 43), the exception message consists of the Modbus-
TCP header, the slave address, function code, then the
MEI type, followed by the Exception Code.

2.5 REGISTER DATABASE
Appendix E in the MPU-32 and FPU-32 manual

contains the Modbus Register Table. The table starts at
register 0 (Modbus 40001) and each register is 16-bits
wide. Types "long" and "float" are 32-bit values. For
both long and float types, the low-order word is
transmitted first followed by the high-order word. Word
values have the high byte followed by the low byte. Float
types are per the IEEE 754 Floating-Point Standard. All
bytes of long and float types must be written using one
message or an error will result. This does not apply for
read commands.

2.6 NETWORK STATUS AND INDICATION
Network status is viewed in the Metering Network

Status menu. “Type” should indicate Modbus TCP and
“Link” indicates either ACTIVE if there is at least one
connection or TIMED OUT if there are no active
connections. The fourth line contains the most recent
error and is not necessarily an active or current error. The
last error will continue to be displayed even after it has
been resolved.

Communication status LEDs are located on the rear
panel of the slave. When Modbus TCP is selected, the
green Module Status (MS) LED will be ON if it is
correctly configured. A flashing green or red MS LED
indicates a configuration error. The Network Status (NS)
LED will indicate solid green when there is link activity,
flashing green when there are no active connections and
will flash red when any link has timed out. Both LED’s
are OFF when the Network Type is set to None.

3 DATA RECORDS

Event record information is located starting at MPU-32
or FPU-32 register 973.

Only one event record can be read at a time. Record
data is for the record indicated by the Record Selector.
To select a record, write the record number to Record
Selector with the first message and then read the values in
the record with a second message. Record Head points to
the next available record. The last event record captured
is at Record Head minus one.

The Record Selector must be in the range of 0 to 99.
Values outside this range will select record 0.

4 NETWORK TIMEOUT

The MPU-32 or FPU-32 slave can be configured to trip
or alarm on a network timeout using the Setup | Hardware
| Network Comms menu. The Net Trip Action and Net
Alarm Action set points set the actions to be taken when a
timeout occurs. To prevent a timeout, a valid message,
addressed to the slave, must be received at time intervals
less than 5 seconds. If frequent communication is not
required the Net Trip Action and Net Alarm Action should
be disabled and connections closed after each transaction.
The Network Status window will display that the link is
timed out but this timeout indication can be ignored.

5 USER DEFINED REGISTERS

User-Defined Registers are used to assemble data in
groups in order to minimize the amount of message
requests. User-Defined Register values are entered using
the Setup | Hardware |Network Comms | User Register
menu, by using SE-Comm-RIS, or by using network
communication messages.

The values entered are the MPU-32 or FPU-32 register
numbers corresponding to the required parameter. The
entered values are accessible from the menu or via
communications starting at MPU-32 or FPU-32 register
1400 (Modbus 41401).

The data corresponding to these register values is
retrieved by reading the values starting at registers 1432
(Modbus 41433). The format of the data is a function of
the associated MPU-32 register type.

Typically, for PLC communications it is desirable to
define data assemblies that are grouped by data type (float
or integer). A single read can then access all required
float values while another read can access the integer
values.

For example, to access the three phase currents, enter
860, 861, 862, 863, 864, and 865, in User Register 0 to 5.
The values are read by reading three float values starting
at Modbus 41433. In a similar manner, the status and trip
bits 0 to 32 can be read by entering 1096, 1097, 1104,
1105 in the next available register locations starting at
User Register 6. These can be read starting at MPU-32 or
FPU-32 Register 1438 (Modbus 41439).

6 SPECIFICATIONS

Interface.. 10BaseT, 100BaseT,
Cat. 3, 4, 5, UTP, STP

Protocol... Modbus TCP
Baud Rate 10/100 Mbps.
Number of MPU-32's Connected .. Up to 254 units
Number of Connections/Unit......... Up to five (5)
Bus length..................................... 100 m per segment

5 Startco Engineering Ltd. Page 5
MPU-32 and FPU-32 Modbus TCP Preliminary

MPU-32 MB-TCP-M, September 5, 2006

This page intentionally left blank.

	Table of Contents
	List of Tables
	1. General
	2. Modbus Protocol
	2.1 Protocol Setup
	2.2 Error Checking
	2.3 Function Codes Supported
	2.3.1 Modbus-TCP Header
	2.3.2 Read Input/Holding Registers (Code 4/3)
	2.3.3 Write Single Register (Code 6)
	2.3.4 Write Multiple Registers (Code 16)
	2.3.5 Command Instruction (Code 6)
	2.3.6 Command Instructions Using Register Writes
	2.3.7 Read Device Identification (Code 43)

	2.4 Error Responses
	2.5 Register Database
	2.6 Network Status and Indication

	3. Data Records
	4. Network Timeout
	5. User Defined Registers
	6. Specifications

