The Model 460 MotorSaver® is an auto ranging voltage monitor designed to protect three-phase motors regardless of size. The MotorSaver® is used on 190-480 VAC, 50 to 60 Hz motors to protect from damage caused by single phasing, low voltage, high voltage, phase reversal, and voltage unbalance.

CONNECTIONS

1. Mount the MotorSaver® in a convenient location in or near the motor control panel. If the location is wet or dusty, the MotorSaver® should be mounted in a NEMA 4 or 12 enclosure. The MotorSaver® can be mounted to a back panel using two #6 or #8 x 5/8 screws or can be snapped onto a DIN rail.

2. Connect L1, L2 and L3 on the MotorSaver’s terminal strip to the LINE SIDE of the motor starter. (See Figure No. 1).

3. Connect the output relay to the circuitry to be controlled. For motor control, connect the normally open contact in series with the magnetic coil of the motor starter as shown in Figure No. 1. For alarm operation, connect the normally closed contact in series with the control circuit as shown in Figure No. 2.
FIGURE NO. 1: CONTROL WIRING DIAGRAM

FIGURE NO. 2: ALARM WIRING DIAGRAM
1. Line voltage adjustment: Rotate the “VOLTAGE ADJ. (VAC)” to the nominal three-phase line voltage feeding the motor to be protected.

2. Restart delay adjustment: Rotate the “RESTART (SEC)” adjustment to the desired position. The restart delay is the time between MotorSaver® seeing acceptable voltage and the MotorSaver® closing its output contacts. For compressor applications, the restart delay should be set for the approximate time it takes for the head pressure to bleed off of the compressor. For other applications, the restart delay is typically set between 2 and 10 seconds.

3. Trip delay adjustment: Rotate the “TRIP DELAY (SEC)” adjustment to the desired setting. This adjustment does not affect the trip delay on phasing faults. Typically, the trip delay adjustment is set between 1 and 5 seconds. In areas where voltage fluctuations are frequent, the trip delay adjustment may be set greater than 10 seconds.

4. Voltage unbalance adjustment: Rotate the “UNBALANCE TRIP (NEMA%)” adjustment to the desired unbalance trip level. The NEMA MG1 standard does not recommend operating a motor above 1% voltage unbalance without derating the motor. The NEMA MG1 standard also recommends against operating a motor above a 5% voltage unbalance under any circumstances. SymCom recommends consulting the motor manufacturer for specific tolerances.

Percent Unbalance = \[
\frac{\text{Maximum Deviation from the Average}}{\text{Average}} \times 100
\]

Example: The measured line-to-line voltages are 203, 210, and 212.

Average = \[
\frac{203 + 210 + 212}{3} = 208.3
\]

The maximum deviation from the average is the largest difference between the average voltage (208.3) and any one voltage reading.

\[
208.3 - 203 = 5.3 \quad 210 - 208.3 = 1.7 \quad 212 - 208.3 = 3.7
\]

The maximum deviation from the average is 5.3.

\[
\frac{5.3}{208.3} \times 100 = 2.5\% \text{ Unbalance}
\]
CONGRATULATIONS!!
YOU HAVE JUST INSTALLED THE FINEST MOTOR PROTECTION AVAILABLE!!

POWER-UP

Turn on the 3Ø power to the motor. The MotorSaver’s green RUN light will blink during the RESTART delay. After the RESTART delay, the MotorSaver® will energize its output contacts and the green RUN light will illuminate. If the contacts do not energize and the RUN light does not illuminate, see the TROUBLESHOOTING section.

<table>
<thead>
<tr>
<th>Diagnostic Indicator Lights</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN</td>
<td>GREEN</td>
</tr>
<tr>
<td>RESTART DELAY</td>
<td></td>
</tr>
<tr>
<td>REVERSE PHASE</td>
<td>RED</td>
</tr>
<tr>
<td>UNBALANCE / SINGLE PHASE</td>
<td>RED</td>
</tr>
<tr>
<td>HIGH / LOW VOLTAGE</td>
<td>RED</td>
</tr>
</tbody>
</table>

08/13/03
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>LIGHT PATTERN</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No lights are on. The unit seems completely dead.</td>
<td>N / A</td>
<td>Measure the three line-to-line voltages. If any of the voltages are below 150 VAC, the MotorSaver® does not have enough power to operate its internal electronics. This may occur on a single-phased system. If the voltages are correct, call SymCom at 1-800-843-8848 or 1-605-348-5580.</td>
</tr>
<tr>
<td>Red light is blinking (on initial power up).</td>
<td>RED</td>
<td>Turn off the three-phase power. Swap any two leads powering the MotorSaver® (L1, L2, or L3). There is a 50-50 chance of connecting L1, L2, and L3 correctly the first time. Re-apply the three-phase power.</td>
</tr>
<tr>
<td>Red light is blinking (after the motor has been previously running).</td>
<td>RED</td>
<td>The incoming lines have been reverse phased. The MotorSaver® is preventing the motor from running backwards. Correct the phase sequence.</td>
</tr>
<tr>
<td>Red light is blinking in this pattern.</td>
<td>RED</td>
<td>The voltage is unbalanced or single-phased. Measure the incoming line voltages and calculate the % unbalance. If the voltage unbalance does not exceed the % unbalance reset value, call SymCom at 1-800-843-8848 or 1-605-348-5580.</td>
</tr>
<tr>
<td>Red light is on steady.</td>
<td>RED</td>
<td>The voltage is out of tolerance. Measure the three line-to-line voltages. Calculate the average of the three voltages. If the average is 7% above or below the nominal voltage as selected by the LINE VOLTAGE ADJUST, the MotorSaver® is functioning properly. If the voltage is within ±7% of the selected line voltage, call SymCom at 1-800-843-8848 or 1-605-348-5580.</td>
</tr>
<tr>
<td>Green light blinks and motor is not running.</td>
<td>GREEN</td>
<td>The MotorSaver® is in restart delay.</td>
</tr>
<tr>
<td>Green light is on steady, but motor does not start.</td>
<td>GREEN</td>
<td>The MotorSaver® is in run mode. Ensure other control devices are allowing the motor to start. Check control circuit for loose wires or malfunctioning switches.</td>
</tr>
</tbody>
</table>

Any questions or comments call SymCom at 1-800-843-8848 or 1-605-348-5580

-5-

08/13/03
SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - Phase Line Voltage</td>
<td>190 - 480 VAC</td>
</tr>
<tr>
<td>Frequency</td>
<td>50* - 60 Hz</td>
</tr>
<tr>
<td>Low Voltage (% of setpoint)</td>
<td></td>
</tr>
<tr>
<td>Trip</td>
<td>90% ± 1%</td>
</tr>
<tr>
<td>Reset</td>
<td>93% ± 1%</td>
</tr>
<tr>
<td>High Voltage (% of setpoint)</td>
<td></td>
</tr>
<tr>
<td>Trip</td>
<td>110% ± 1%</td>
</tr>
<tr>
<td>Reset</td>
<td>107% ± 1%</td>
</tr>
<tr>
<td>Voltage Unbalance (NEMA)</td>
<td></td>
</tr>
<tr>
<td>Trip</td>
<td>2 - 8% Adjustable</td>
</tr>
<tr>
<td>Reset</td>
<td>Trip Setting minus 1% (5 - 8%)</td>
</tr>
<tr>
<td></td>
<td>Trip Setting minus 0.5% (2 - 4%)</td>
</tr>
<tr>
<td>Trip Delay Time</td>
<td></td>
</tr>
<tr>
<td>Low, High, and Unbalanced Voltage</td>
<td>1 - 30 Seconds Adjustable</td>
</tr>
<tr>
<td>Single-phasing faults (>25% UB)</td>
<td>1 Second Fixed</td>
</tr>
<tr>
<td>Restart Delay Time</td>
<td></td>
</tr>
<tr>
<td>After a fault or complete power loss</td>
<td>1 - 500 Seconds Adjustable</td>
</tr>
<tr>
<td>Output Contact Rating - SPDT</td>
<td></td>
</tr>
<tr>
<td>Pilot Duty</td>
<td>480 VA @ 240 VAC</td>
</tr>
<tr>
<td>General Purpose</td>
<td>10 A @ 240 VAC</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>6 Watts (maximum)</td>
</tr>
<tr>
<td>Weight</td>
<td>14 oz</td>
</tr>
<tr>
<td>Enclosure</td>
<td>Polycarbonate</td>
</tr>
<tr>
<td>Terminal</td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>6 Inch-Pounds Max.</td>
</tr>
<tr>
<td>Wire AWG</td>
<td>12 - 20 AWG</td>
</tr>
<tr>
<td>Safety Marks</td>
<td></td>
</tr>
<tr>
<td>UL</td>
<td>UL508 (File # E68520)</td>
</tr>
<tr>
<td>CE</td>
<td>IEC 60947-6-2</td>
</tr>
<tr>
<td>Standards Passed</td>
<td></td>
</tr>
<tr>
<td>Electrostatic Discharge (ESD)</td>
<td>IEC 1000-4-2, Level 3, 6 kv contact, 8 kv air</td>
</tr>
<tr>
<td>Radio Frequency Immunity, Radiated</td>
<td>159 MHz, 10 V/m</td>
</tr>
<tr>
<td>Fast Transient Burst</td>
<td>IEC 1000-4-4, Level 3, 3.5 kv input power and controls</td>
</tr>
</tbody>
</table>

NOTE: 50 Hz will increase all delay timers by 20%
SymCom warrants its microcontroller based products against defects in material or workmanship for a period of five (5) years* from the date of manufacture. All other products manufactured by SymCom shall be warranted against defects in material and workmanship for a period of two (2) years from the date of manufacture. For complete information on warranty, liability, terms, and conditions, please refer to the SymCom Terms and Conditions of Sale document.

Surge

<table>
<thead>
<tr>
<th></th>
<th>IEC 1000-4-5, Level 3, 4kv line-to-line; Level 4, 4kv line-to-ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC</td>
<td></td>
</tr>
<tr>
<td>ANSI / IEEE</td>
<td>C62.41 Surge and Ring Wave Compliance to a level of 6kv line-to-line</td>
</tr>
<tr>
<td>Hi-potential Test</td>
<td>Meets UL508 (2 x rated V +1000V for 1 minute)</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>Ambient Operating: -20° - 70° C (-4° - 158°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ambient Storage: -40° - 80° C (-40° - 176°F)</td>
</tr>
<tr>
<td>Class of Protection</td>
<td>IP20, NEMA 1 (Finger Safe)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>10-95%, non-condensing per IEC 68-2-3</td>
</tr>
</tbody>
</table>

DIMENSIONS

![Dimensions Diagram]

SymCom warrants its microcontroller based products against defects in material or workmanship for a period of five (5) years from the date of manufacture.
Visit our website at www.symcominc.com for our complete catalog and new product listings!